不确定性下的判断依赖于启发式过程,用于预测不确定事件和评估概率值的三种启发式方法:代表性启发式、可用性启发式以及锚定和调整(本文应该没什么流量)(2)

2023-04-24 来源:飞速影视
若想通过代表性对判断进行阐述,请考虑下面这个情况,若有某个人被他原来的邻居描述为:“史蒂夫非常腼腆,少言寡语,很乐于助人,却对他人或这个现实世界没多大兴趣。他谦恭有礼,做事井井有条,中规中矩,关注细节。”人们如何从一个可能的职业列表中(例如农民、售货员、飞行员、图书管理员或是医生)评估他从事某个特定职业的概率?又如何根据可能性的大小来将这些职业进行排序呢?在代表性启发法中,例如,史蒂夫是个图书管理员的概率是通过其与典型的图书管理员形象的代表性或相似性来进行评估的。事实上,对于这类问题的研究已经表明,人们对职业概率的排序与对职业相似性的排序方法完全是相同的。而这种关于概率的判断方法会导致严重的错误,因为相似性或代表性不会受到某些因素的影响,而这些因素却能影响对概率的判断。
对结果的先验概率(prior probability)不敏感。对代表性没有任何影响而对概率有重要影响的其中一个因素是结果的先验概率,或基础比率。例如,在史蒂夫的那个例子中,在我们作出史蒂夫是个图书管理员而不是农民的理性评估时,是应该将农民比图书管理员人数更多的事实考虑在内的。然而,对基础比率的考虑并不会影响史蒂夫与图书管理员以及农民的典型形象的相似性。因此,如果人们通过代表性来评估概率,先验概率就会被忽视掉。我们在运用了先验概率的实验中检验了这个假设。在实验中,我们向受试者简要概述了几个人的性格,这几个人是从100位工程师及律师的样本中随意抽取出来的。而受试者需要通过对每个人的描述来评估其是工程师还是律师。在某个实验情境中,受试者被告知这些被描述的100人中,有70位工程师、30位律师。而在另一个实验情境中,受试者被告知这100人中,有30位工程师、70位律师。
在第一种情境下,受试者判断任意一个描述是关于工程师的而不是关于律师的概率都应该高于第二种实验情境。因为第一种情境中工程师更多,第二种情境中律师更多。值得注意的是,我们通过贝叶斯定理还能知道每个描述的概率比率应该是(0.7/0.3)2,或是5.44。然而,这些受试者在这两个实验情境中都得出了同样的概率判断,这严重违反了贝叶斯定理。很明显,受试者认为某个特定的描述是在说工程师而非律师是通过描述对于这两个典型职业的代表程度而来的,而很少或根本就不考虑其所属类别的先验概率。
当这些受试者没有其他信息来源时,他们会正确地利用先验概率。在没有人物描述的情况下,受试者判断某个人是工程师或律师的概率分别是0.7和0.3,这与基础比率正好符合。然而,当某个描述存在,就算这个描述没有任何信息,先验概率还是会被彻底忽略掉。对于以下描述的回应就阐明了这个现象:
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号