不确定性下的判断依赖于启发式过程,用于预测不确定事件和评估概率值的三种启发式方法:代表性启发式、可用性启发式以及锚定和调整(本文应该没什么流量)(9)

2023-04-24 来源:飞速影视
相关性错觉。L. J.查普曼与J.P.查普曼曾描述过一种有趣的偏见,这种偏见是在判断两个同时发生的事件的频率时产生的。他们向受试者提供了几个假设的精神病患者的信息。信息包括每位病人的临床诊断数据和一幅由病人画的人像画。然后,受试者需评估每个诊断(例如妄想症或疑心病)以及人像画中不同特征(例如奇怪的眼睛)的频率。受试者明显高估了自然的联想物同时发生的频率,例如疑心病和奇怪的眼睛的频率。这种效应被称为相关性错觉(illusory correlation)。受试者错误地判断了得到的数据,“重新发现”了许多普遍但无根据的临床知识,这些临床知识就涉及人像画测试的相关解释。相关性错觉效应极度抗拒相互矛盾的数据。即使在症状与诊断呈负相关的情况下,相关性错觉仍然存在,它使受试者不能察觉到真正存在的关系。
可得性为相关性错觉效应提供了自然的解释。根据两个事件相互关联的强度,可以判断出它们同时发生的频率。当两个事件关联性强的时候,你可能会认为它们经常同时发生。因此,强关联常被判断为经常同时发生。根据这个观点,疑心病与奇怪的眼睛的关联性错觉就是由疑心病常会与奇怪的眼睛而引起的,而不是因与人体其他部位相联系而引起的。
从我们的人生经历可知,总的来说,相比发生频率低的例子,我们更能又好又快地回忆起发生频率高的例子,更容易想到可能发生的事,而不是发生概率不高的事。当事件频繁地同时发生时,这两个事件之间的关联性会得以增强。所以,人们可以自由使用可得性启发式的程序,具体是通过提取、构建和联想等相关大脑运作的容易程度来估测类别的数量、事件的可能性或是事件同时发生的频率。然而,前面的例子已经说明,这个有价值的估测过程会导致系统性错误。
判断与锚定
在许多情况下,人们都会通过初始值来确定最后的答案。初始值或起始点,可能是从问题形成之时得到的提示,也可能是在稍微计算之后得到的结果。但无论是前者还是后者,其调整都不会太过充分。不同的起始点会产生不同的估测,都会偏向于初始值。我们将这个现象称为锚定。
不充分的判断。在某个证明锚定效应的实验中,受试者需要估测不同的数值,并以百分比来进行评定(例如非洲国家在所有联合国成员国中所占席位的百分比)。在猜测每一个数值的时候,受试者面前一个范围为0~100的幸运转盘都会旋转一次。受试者首先需要说明,转盘指针指向的数值比起实际值来说是高了还是低了,然后,再将转盘的指针拨向自己估计的值。不同的小组面对的是不同的初始数字,而这些随机的数值对估计有着巨大的影响。以非洲国家占联合国成员国的百分比为例,转盘指针指向10的小组估测的中值是25,而指针指向65的小组估测的中值是45,其中,10和65就被受试者视为起始点。对于估计要精确的要求也并没能削弱锚定效应的影响。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号