在纠缠中跃迁(3)

2023-04-25 来源:飞速影视
是人类有史以来第一张光即是波,又是粒子流的照片。

在纠缠中跃迁


实际上,物质都具有波粒二象性,只是存在着波动性的大小问题。物质的波动性取决于它的质量,质量越大,其不确定性就越小,同时波动性也就越小,因为波的分布只是粒子出现的概率分布罢了。

在纠缠中跃迁


(2)不确定性原理
不确定性原理(Uncertainty principle)是由海森堡于1927年提出,这个理论是说,你不可能同时知道一个粒子的位置和它的速度。 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。
由于粒子的位置和动量不能够同时测量,或者说没有一个状态,完全违反了经典力学。
在经典力学中,任何一个物体都同时具有确定的位置和动量,例如轨道概念和静止概念。轨道的存在要求在轨道每一个粒子具有一个确定的位置和速度;静止的概念要求粒子的位置确定,并且速度为零。这都意味着粒子可以同时具有准确的位置和动量,而这些与微观粒子运动的不确定性原理是矛盾的。不确定性原理充分体现了牛顿经典力学和量子力学的矛盾以及微观粒子的波粒二象性,为人类认识微观世界奠定了基础。
(3)量子跃迁
所谓的量子跃迁就是微观状态发生跳跃式变化的过程。由于微观粒子的状态常常是分立的,所以从一个状态到另一个状态的变化常常是跳跃式的。例如电子在原子核外的轨道是间断的、量子化的,电子吸收或发射光子后就会发生轨道跃迁,而轨道跃迁也是间断的、量子化的。

在纠缠中跃迁


相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号