这个你每天刷牙时看见的现象,物理学家花了500年也找不到解释(4)

2023-04-28 来源:飞速影视
对于在固定固体平面上(如水流周围的水槽表面)的惯性流,与平面表面接触的流体粒子速度为零。随着与平面距离的增加,流体粒子的速度急速上升。在平面上方很薄的液面处,流体粒子的速度与流体其他部分的速度基本相同,这里被定义为边界层。
边界层的存在完善了水跃模型,因为在水流刚刚落下的地方,流体基本是惯性流动;随后边界层逐渐形成,最终随着我们远离水流撞击点,边界层完全延伸开来,形成一个较薄的水层。而在边界层下方,流体速度很小,黏度占据主导地位,这一区域中便会出现层流。而由于这层流体中的摩擦力较大,水流越来越缓慢,使得水层最终变得更厚,吞没了边界层。由于此时黏度可以忽略,边界层消失,流体不断变薄,因为它会保持速度不变并朝各个方向径向展开。
因此,当流体黏度较大的时候,我们会观察到较小的水跃半径。瑞利男爵的模型并未考虑这种效应。1948年,日本物理学家谷一郎(Itiro Tani)首次对这种黏稠的边界层进行了建模。
接下来,英国物理学家埃里克·沃森(Eric Watson)在1964年提出了水跃研究中最完善的理论之一。这一模型的独创性在于,它将内部区域(水墙之前)划分成许多个不同部分(水流撞击部分、边界层发展部分,以及边界层全面入侵液面的区域)。他的方程很好地描述了水膜的厚度随注入水流的距离变化的函数关系。
但这一理论仍然不完善,它仅仅描述了水跃内部的情形,而没有提供水跃外部的信息。为了计算半径,我们必须将满足“贝朗日条件”的冲击和模型联系起来,还要知道在紧邻水跃发生处的液面高度。但是由于测量这一高度比直接测量水跃半径更加困难,这个模型在预测方面的作用很小。
寻找完善的模型
1993年,丹麦科技大学的托马斯·玻尔(Tomas Bohr)和同事们终于对水跃外部区域进行了建模。玻尔的父亲和祖父都是诺贝尔物理学奖得主。玻尔等人借助“贝朗日条件”将水跃的内部和外部区域联系起来,用同一个方程(称为“润滑方程”)对这两个区域进行建模,完善地描述了问题。借助这些方程的一个数值解,他们得到了第一个理论定律,能够根据系统参数(流体的流量、黏度和密度等)预测水跃半径。
因此,科学家花了超过500年,才发展出第一个令人满意的水跃模型。这个进展可以说是巨大的,尽管我们仅仅“解决”了流体垂直落到平面上然后自由流动这一简单的情况。我们还无法研究流体倾斜流下,或流到像水槽那样具有边沿的平面上的情况。实际上,我们才刚刚开始理解这一现象,还未触及问题的复杂之处……
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号