这才是清华大学!近期科研进展:揭示早期星际间重元素起源之谜(4)

2023-04-29 来源:飞速影视

这才是清华大学!近期科研进展:揭示早期星际间重元素起源之谜


体相纳米气泡示意图及稳定性判据
9月28日,王兵研究团队在《朗缪尔》(Langmuir)杂志发表上述研究成果,文章题目为“从分子动力学的角度理解体相纳米气泡的稳定性”(Understanding the Stabilization of a Bulk Nanobubble: A Molecular Dynamics Analysis),并作为当期杂志封面。该文通讯作者为航院长聘教授王兵,第一作者为其指导的博士生高瞻,作者还包括研究团队的孙卫涛副研究员和北京理工大学吴汪霞博士后。
生命学院魏迪明课题组
报道基于三螺旋的DNA变构装置的开发
自问世以来,DNA纳米结构凭借其优异的可编码性,已在诸如药物递送、环境监测、生物计算、智能材料等众多领域显现出可观的应用前景。与此同时,在DNA纳米结构设计的不断探索中,人们对结构的复杂性、灵活性及功能化等方面的认识愈渐深入,相关设计理念和设计经验得以不断积累和丰富。众多特殊的核酸结构也开始被应用于纳米元件的设计中,如三螺旋和四联体等。这些非常规的核酸结构具有着与双螺旋截然不同的理化性质,一定程度上扩充了核酸纳米结构设计的工具库。
变构调节是自然界经漫长时间进化出来的一种在生命活动中非常普遍、高效的调节方式。对于许多在生命活动中具有重要作用的酶来说,其作用于底物的活性会受到其他配体的调节。一般来讲,这些配体通过结合到酶的某个位点(变构位点,不同于正构位点。)从而使酶的构象发生变化以调节酶与其底物的结合,增强或抑制酶的活性。正因其调节的可控性,变构调节已经被应用于核酸纳米设计中以实现底物的装配、释放以及动力学控制等目的。然而迄今为止,从调控机理而言,这些人工设计的核酸变构元件的复杂程度要远逊于天然进化出的变构酶。究其原因,一是配体种类有限(特定的蛋白或小分子),二是完成方式单一(DNA双螺旋的打开或关闭)。
近日,清华大学生命学院魏迪明课题组发文报道基于三螺旋的DNA变构装置的开发。在本研究中,作者设计了以三螺旋作为变构位点的Z-switch结构,三螺旋是在普通的Watson-Crick双螺旋的基础上,第三条链以Hoogsteen碱基配对的方式形成三股螺旋。第三条链(TFO)作为配体参与变构调节。TFO与变构位点的结合可以调节Z-switch结构的活性位点进而影响其自组装活性。作者通过研究多组不同初始状态的Z-switch结构变构调节前后的构象变化,进行系统的筛选和比对,得到理想的变构模型。该结果与理论预期高度吻合,同时该结果在不同Z-switch结构中的成功应用也确定了其鲁棒性和可推广性。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号