ACL2018首日:8大tutorial,深度强化学习最受关注|ACL2018(3)
2023-04-29 来源:飞速影视
将阐述近几年来对话人工智能系统上基于神经网络方法。对话系统分为三类:问答智能体;任务导向型智能体;社交机器人,在这一 tutorial 上会回顾最先进的神经网络方法,在基于神经网络的方法和传统符号方法之间建立联系,使用特定的系统和模型作为研究案例,来讨论我们所取得的进展和面临的挑战。
Tutorial 3:Variational Inference and Deep Generative Models
地址:https://github.com/philschulz/VITutorial#general
这一 tutorial 将对变分推理进行介绍,对如何使用变分方法来训练深度生成模型(DGMs)进行了详细讲解,包括一系列实际案例。同时,将提及这些学习算法所需的数学背景,提供实现指南。也将介绍连续和离散变量模型。
Tutorial 4:Connecting Language and Vision to Actions
地址:https://lvatutorial.github.io/
这一 tutorial 将介绍结合文本和视觉理解的多模式任务和数据集,会为大家带来现有的 image captioning、视觉问题回答 (VQA) 和视觉对话等任务的最先进技术,评价训练模型时主要的模块 (如 co-attention ) 和一些最新算法 (如一些合作/对抗博弈)。然后,将讨论结合语言、视觉和动作在当前面临的挑战和即将面临的挑战,并介绍一些最新发布的用于此类研究的交互式 3D 模拟环境。
Tutorial 5:Beyond Multiword Expressions: Processing Idioms and Metaphors
Tutorial 主讲人 Valia Kordoni 表示,这一 tutorial 的目标受众是机器学习、解析 (句法和语义) 和语言技术方面的研究人员和实践者,并不一定需要是习语和隐喻方面的专家。这一 tutorial 的目的是建立与会者对如下几点的清晰认知:习语和隐喻的语言特点;使用当前领先 NLP 技术的习语和隐喻计算模型;深度学习和自然语言处理之间的相关性;未来将要做的一系列工作。
Tutorial 6:Neural Semantic Parsing
地址:https://github.com/allenai/acl2018-semantic-parsing-tutorial(待更新)
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号