学一个忘一个?人工智能遭遇“灾难性遗忘”,解决方案治标不治本……(3)
2023-04-30 来源:飞速影视
纪荣嵘也表示,当前像Siri或小爱这样的人工智能助手产品,还不能算真正意义上的通用人工智能,一方面,这些人工智能助手只能在预设的知识范围内和人类互动,完成指令;另一方面,人类没办法像养宠物或养小孩一样,通过互动去教导这些人工智能助手学习新的知识或新的指令。
多个解决方案“治标不治本”
据了解,“破解灾难性遗忘”是实现通用人工智能的一个关键。解决了“灾难性遗忘”问题后,模型就能具备持续学习的能力, 可以像人类一样不断获取新的知识、新的技能,同时能够最大化地保持旧的经验知识和技巧。
那么,目前解决“灾难性遗忘”的方案有哪些?
“最常见的方式是多任务学习, 就是把所有任务的训练数据同时放到一起,模型就可以针对多种任务进行联合优化。”纪荣嵘举例说,如让模型同时学习坦克大战和超级玛丽两个任务,等两个任务同时学的差不多的时候,模型才停止训练。
但柯逍也指出,这种方式随着任务增多,新任务样本数量被稀释,训练会拖慢学习新知识的效率,并且,不是任何情况都能获得先前任务的数据来复习的。
还有的解决方案是根据新的任务知识来扩充模型结构,保证旧的知识经验不被损害。此次,谷歌大脑所提出的“记忆碎片观察”方法正是对不同任务(场景)构建多个人工智能模型来进行学习。“模型扩充的方式从本质上并没有解决灾难性遗忘的问题,只是用多个模型来替代单个模型去学习多种任务,避免旧参数被覆盖。”纪荣嵘说。
当前,解决灾难性遗忘还存在着一对矛盾:在学习新任务的过程中,需要给予网络足够多的自由度进行连接权重调整,但是又要避免这样的调整“抹去”原有的记忆。
“因此,科学家们开始设计新的学习算法解决上述矛盾,使得网络在进行权重调整的时候,对已有知识的影响最小化。”余山表示,其团队近期提出的正交权重修改算法,就属于这类,主要通过限制权重修改只能在旧任务的解空间中进行,这一算法较好的克服了灾难性遗忘,使得同一个分类器网络可以连续的学习多达数千个类别的识别。
魏朝东认为,虽然目前科学家们已经探索出多种解决方案,但目前的AI只从认知科学中获得了一小部分灵感,对大脑的模拟还没达到人们想象的高度,大部分AI方案在这方面是“先天不足”的。解决“灾难性遗忘”是一个综合性问题,不仅需要有理论支撑,未来还需要有可行的技术手段去实现。
来源:科技日报
编辑:张爽
审核:管晶晶
终审:冷文生
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号