华为提出基于进化算法和权值共享的神经网络结构搜索,CIFAR-10上仅需单卡半天|CVPR2020(4)
2023-05-01 来源:飞速影视
假设优化目标为模型参数和准确率,对于NSGA-III,会根据两个不同的指标进行non-dominated排序,然后根据帕累托图进行选择。而对于pNSGA-III,额外添加考虑准确率的增长速度的non-dominated排序,最后结合两种排序进行选择。这样,准确率增长较慢的大模型也能得到保留。如图2所示,pNSGA-III很明显保留的模型大小更广,且准确率与NSGA-III相当。
CARS算法的连续优化
CARS算法的优化包含两个步骤,分别是网络结构优化和参数优化,另外,在初期也会使用参数warmup。
Parameter Warmup,由于超网的共享权重是随机初始化的,如果结构集合也是随机初始化,那么出现最多的block的训练次数会多于其它block。因此,使用均分抽样策略来初始化超网的参数,公平地覆盖所有可能的网络,每条路径都有平等地出现概率,每种层操作也是平等概率,在最初几轮使用这种策略来初始化超网的权重。Architecture Optimization,在完成超网初始化后,随机采样个不同的结构作为父代,为超参数,后面pNSGA-III的筛选也使用。在进化过程中生成个子代,是用于控制子代数的超参,最后使用pNSGA-III从中选取个网络用于参数更新。Parameter Optimization,给予网络结构合集,使用公式3进行小批量梯度更新。Search Time Analysis
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号