AI降维打击人类画家,文生图引入ControlNet,真能代替人类?(2)
2023-05-01 来源:飞速影视
对于刚接触AI绘画的普通人来说找到合适的关键词是面临的首要问题,其次很多我们常见的关键词如:建筑,宏大/精美等远远不如渲染配置参数词:“4K超清”,“高质量”,“阴影效果”表现效果好。可见单纯的关键词控制无法满足用户对精美细节的需要。而在成图的时候原生Stable-Diffusion 模型的瑕疵则更明显,比如著名的“AI不会画手”,“美少女吃面梗”都反映出大模型在手脚方面的细节表现不好。针对这些问题除了避免出现手脚,进行二次AI创作/手动修改似乎也没什么好的办法(加入数据集针对性训练当然也是一种办法,但是一方面对于数据量的要求会很大大提升,另一方面还是没有很好地解决黑盒问题)。
幸运的,就在不久之前,ControlNet发布了。
三、什么是ControlNet?
ControlNet是一种神经网络结构,通过添加额外的条件来控制扩散模型。
ControlNet将网络结构划分为:1. 不可训练(locked)部分保留了stable-diffusion模型的原始数据和模型自身的学习能力。2. 可训练(trainable)部分通过额外的输入针对可控的部分进行学习,本质是端对端的训练。简单来说就是通过一些额外条件生成受控图像-在Stable Diffusion模型中添加与UNet结构类似的ControlNet额外条件信息,映射进参数固定的模型中,完成可控条件生成。
众所周知,AIGC的可控性是它进入实际生产最关键的一环。有了ControlNet的帮助我们可以直接提取建筑的构图,人物的姿势,画面的深度和语义信息等等。在很大程度上我们不需要频繁更换提示词来碰运气,尝试一次次开盲盒的操作了。
ControlNet把每一种不同类别的输入分别训练了模型,目前有8个:Canny,Depth,HED,MLSD,Normal,Openpose,Scribble,Seg。这些可控条件大致可以分为三类,下面我们将一一展开介绍:
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号