科学好故事|大脑是一台名副其实的“预测机器”(3)
2023-05-04 来源:飞速影视
在每一对连续的层级之间会同时发生这一过程,一直到最下面接收实际感觉输入的层级。从外界接收到的信息与预期信息之间的任何差异都会产生一个误差信号,并将其传回层级结构。最终,最高的层级会更新其假设(发现阴影中其实不是一条蛇,而是一条绳子)。
总的来说,预测编码的概念是指大脑基本上由两个神经元群构成,尤其是当这一概念被应用到大脑皮层时。一个神经元群负责对当前感知信息的最合理预测进行编码,另一个则负责发出预测中的误差信号。
1999年,计算机科学家拉杰什·拉奥和达纳·巴拉德(当时分别在索尔克生物研究所和罗切斯特大学任职)建立了一个强大的预测编码计算模型,其中具有明确用于预测和纠错的神经元。他们模拟了灵长类动物大脑视觉处理系统——由负责识别面孔和物体的层级组织区域组成——的部分通路,并表示该模型可以重现灵长类视觉系统的一些不寻常行为。
不过,在这项工作完成时,现代深层神经网络还没有出现。深层神经网络有一个输入层和一个输出层,以及夹在这两层之间的多个隐藏层。到2012年,神经科学家开始使用深层神经网络来模拟灵长类视觉皮层的腹侧流。但几乎所有这些模型都是前馈网络,信息都只从输入端流向输出端。大脑显然不是一个纯粹的前馈机器,大脑中有很多反馈信息,基本上与前馈信号一样多。
因此,神经科学家转向了另一种模型:循环神经网络(recurrent neural network,又称递归神经网络,简称RNN)。这些神经网络具有一些使其成为模拟大脑“理想基质”的特征。循环神经网络的神经元之间既有前馈又有反馈连接,而且它们有独立于输入的持续活动。在很长一段时间——基本上可以说是永远——之内产生这些动态的能力,正是这些网络随后可以被训练的原因。
基于预测的感知。在解释大脑的感知机制时,“自下而上”的感知模型(左)并不如“自上而下”的模型,后者具有由神经元组成的层级结构,使大脑能对即将接收到的感官刺激做出预测
预测可以节能
循环神经网络引起了哈佛大学科学家的注意。2016年,研究团队展示了一个学会预测视频序列中下一帧的循环神经网络。他们将其称为“PredNet”。这个循环神经网络的设计原理与预测编码是一致的,是一个4层的层级结构,每一层都会预测来自下一层的输入信息,如果不匹配,就会向上层发送误差信号。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号