我们常听说的置信区间与置信度到底是什么?(4)

2023-05-04 来源:飞速影视
在这一点上,很多人可能会问两个重要的问题:「我怎样才能取得无数的样本?」和「它对我有什么帮助?」。
让我们回到我们的例子,我们抽取了 1000 人的样本,得到了 63%,我们想知道,随机抽样的 1000 人中有 63% 的足球爱好者的概率是多少。使用这个直方图,我们可以说有(大概)25%的概率,我们会得到一个小于或等于 63% 的值。该理论告诉我们,我们实际上并不需要得到无限的样本,如果我们随机选择 1000 人,只有 63% 的人喜欢足球是可能发生的。
实际上,为了找到不同数值范围或区间的概率,我们需要知道或至少估计总体分布的标准差。因为我们想把事情变得简单一点,因此现在先不讨论它。
让我们回到现实和真正的问题,我不知道美国足球爱好者的实际比例,我只抽取了一个样本,得到了 63%,这对我有什么帮助?
所以,我们不知道在美国热爱足球的人的实际比例。我们所知道的是,如果我们从总体分布取无数个样本,它将如下所示:

我们常听说的置信区间与置信度到底是什么?


这里 μ 是总体分布的平均值(我们例子中足球爱好者的实际百分比),σ 是总体分布的标准差。
如果我们知道这一点(并且我们知道标准差),我们可以说约 64% 的样本会落在红色区域,或者 95% 以上的样品会落在图中的绿色区域之外:

我们常听说的置信区间与置信度到底是什么?


如果我们在之前假设的实际百分比 65% 上使用该图,那么 95% 以上的样本将在 62% 和 68% 之间( - 3)。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号