被操纵的P值:科学论文中的数学胡扯丨展卷(5)
2023-05-20 来源:飞速影视
读者查阅文献时,会看到有50项研究表明政治结果和止痛药消费之间存在联系,也许还有为数不多的研究称没有发现任何联系。读者会很自然地得出结论:政治对止痛药的使用有很大的影响,而那些失败的研究肯定是测量了错误的量,或者是在寻找模式时出了问题。但现实恰恰相反,两者之间没有关系。之所以看起来有关系,纯粹是人为因素导致的——哪些结果值得发表是由人决定的。
本质上讲,问题在于论文是否有发表的机会受它所报告的p 值影响。因此,我们一头撞上了选择偏倚的问题。得以发表的那些论文是全部实验的一个有偏差的样本。在文献中,有统计意义的结果被过度表现,而没有统计意义的结果则表现不足。没有产生显著性结果的实验数据最终被科学家扔进文件柜里(现在则是被扔进文件系统中)。这就是所谓的抽屉问题(file drawer effect)。
还记得古德哈特定律吗?“指标变成目标后,就不再是一个好的指标。”从某种意义上说,p 值就具有这个特点。因为p 值低于0.05 对于论文发表来说是必不可少的,所以p 值不再是衡量统计支持的好指标。如果科学论文是否发表与p 值无关,那么p 值仍将是一个有效指标,可以衡量推翻原假设时得到统计支持的程度。但是,由于期刊明显偏好那些p 值低于0.05 的论文,因此p 值已经失去了原先具有的用途。
2005 年,流行病学家约翰·约阿尼迪斯在一篇文章中总结了抽屉问题的后果,这篇文章的标题颇有挑衅性:“为什么发表的研究成果大多是虚假的”。为了解释约阿尼迪斯的观点,我们需要稍微偏离主题,探究一个被称为基率谬误的统计陷阱。
基率谬误
假设你是医生,正在治疗一位担心自己去缅因州钓鱼时染上莱姆病的年轻人。钓鱼归来以后,他感觉很不舒服,但没有莱姆病特有的环形红斑。为了让他放心,你同意检查他的血液中是否有莱姆病致病菌抗体。
令你们沮丧的是,测试结果呈阳性。测试本身相当准确,但也不是100%的准确,有5%的概率出现假阳性。那么,病人患莱姆病的概率有多大呢?
许多人,包括许多医生,都认为答案是大约95%。这是不正确的。没有莱姆病的人检测呈阴性的概率是95%,而你想知道的是检测结果呈阳性的人患莱姆病的概率。事实证明,这个概率很低,因为莱姆病非常罕见。在莱姆病流行的地区,每1000人中只有1人被感染。假设我们检测1 万人,那么可以预计有大约10个真阳性和大约0.05×10 000= 500个假阳性。在那些检测呈阳性的人中,只有不到1/50 的人真的被感染了。因此,即使检测呈阳性,患病概率也不会超过2%。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号