机器学习时代,神经科学家如何阅读和解码人类的思想(4)

2023-05-20 来源:飞速影视
这些层的设计方式是:它们的尺寸可以迅速减少以平衡 GPU 内存的消耗。为了便于网络可视化分析,作者在最后一个卷积层中使用了全卷积,而不是常见的 CNN 中的池化操作。在卷积层堆叠之后,使用了两个全连接层;第一个有 64 个通道,第二个进行七路分类(每类一个)。在本文模型中,每个卷积层之后都引入了 ReLU 函数和 BN 层,而在最后一个全连接层中采用了 softmax 函数。

机器学习时代,神经科学家如何阅读和解码人类的思想


图 1. 深度神经网络。该网络由五个卷积层和两个全连接层组成。该模型将 fMRI 扫描作为输入,并提供标记的任务类别作为输出
对人脑进行特定任务解码面临的一个最大问题是可用数据有限。在其他类似的应用中,可以采用数据增强的方式以基于有限的数据生成更多的数据样本。数据增强的主要目的是增加数据的变化,这可以防止过度拟合并提高神经网络的不变性。与传统图像相反,本实验中的输入图像已经与标准的 MNI152 模板对齐。因此,在空间域进行数据增强是多余的。考虑到输入数据的不同持续时间,作者在时间域中应用了数据增强,以提高神经网络在这种情况下的泛化能力。在训练阶段的每个 epoch 中,从每个输入数据项中随机分割出 k 个连续的 TR 片段(实验中 k=27)(图 2a)。为了避免报告的准确性出现波动,在验证和测试阶段只使用由每个数据的前 k 个 TR 组成的片段。

机器学习时代,神经科学家如何阅读和解码人类的思想


图 2. 模型训练和网络可视化的工作流程。(a) 模型自动学习标记的 fMRI 时间序列的特征,并在验证的损失达到最小时停止训练。因此,模型训练时不需要手工提取特征。迁移学习的工作流程类似,只是使用训练后的模型取代未训练的模型。每个数据项的分类被反向传播到网络层,以获得对分类重要的部分的可视化。可视化的数据具有与输入数据相同的大小,然后在时间维度上缩小,并映射到 fsaverage 表面
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号