AI在安全领域到底有哪些“不水”的实践?|权威报告

2023-06-17 来源:飞速影视
来源:雷锋网
原标题:AI 在安全领域到底有哪些“不水”的实践?|权威报告
人工智能技术在数据分析、知识提取、智能决策等方面的优势为应对动态多变、复杂交织网络安全问题提供了新思路,网络安全已经成为人工智能应用的重要方向之一。
根据法国咨询机构凯捷 2019 年 7 月发布的《以人工智能重塑网络安全》报告,超过半数的被调研企业认为实施基于人工智能的网络安全措施势在必行。美国咨询机构 CB Insights 统计数据显示,2018 年至 2019 年 6 月间,与网络安全相关的人工智能投融资活动超过 180 笔。
以大数据分析、机器学习、深度学习、人机协同为代表的人工智能与网络安全融合实践日益增多。
在异常流量检测方面,人工智能为加密流量分析提供新方案。思科已将 AI 驱动的加密流量分析应用于交换机等产品,基于初始数据包特征以及后续数据包长度与时序等,通过机器学习算法识别异常流量,提供加密流量检测能力;Darktrace 基于无监督学习算法构建核心异常检测算法体系,为网络中用户和设备建立行为模型以区分正常模式和攻击行为,并对攻击进行标记和阻止,在此基础上提供企业免疫系统、工业免疫系统等产品;观成科技推出针对恶意加密流量的 AI 检测引擎,通过人工智能算法训练加密流量检测模型,支持 SSL、SSH、RDP等多种加密协议分析。
在恶意软件防御方面,针对特定场景人工智能应用取得积极进展。
Agari 面向电子邮件业务开发了智能检测功能,防范针对邮箱的钓鱼攻击和恶意访问;Cylance 利用机器学习算法基于文件特征识别恶意软件,在勒索病毒防御方面效果突出;芯盾时代针对金融反欺诈场景推出智能行为认证产品,基于异常检测及样本标注、欺诈关联图谱等持续发掘欺诈新模式。
在异常行为分析方面,人工智能正成为模式识别的有效补充。
Exabeam 的核心产品安全信息和事件管理(SIEM)平台,通过分析公司的日志数据创建异常检测模型,实现异常活动识别和风险评估;Securonix 的下一代 SIEM 产品基于 Hadoop 构建可扩展的大数据分析架构,提供日志管理、用户和实体行为分析功能,通过人工智能算法检测高级攻击并实现应急响应;启明星辰的 UEBA 产品在对多源异构数据归一处理基础上,利用机器学习等技术建立用户和实体对象行为正常基线并监测与基线的偏离;瀚思科技的 UEBA 解决方案聚焦于对企业内部员工的异常行为进行定位,结合审计、溯源、DLP 等企业原有安全能力,提高检测效果。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号