万字综述之生成对抗网络(GAN)(20)
2024-06-16 来源:飞速影视
Mode Score
Mode Score 作为 Inception Score 的改进版本,添加了关于生成样本和真实样本预测的概率分布相似性度量一项。具体公式如下:
Kernel MMD
计算公式如下:
对于 Kernel MMD 值的计算,首先需要选择一个核函数 k,这个核函数把样本映射到再生希尔伯特空间(Reproducing Kernel Hilbert Space, RKHS),RKHS 相比于欧几里得空间有许多优点,对于函数内积的计算是完备的。
将上述公式展开即可得到下面的计算公式:
MMD 值越小,两个分布越接近。
特点:可以一定程度上衡量模型生成图像的优劣性,计算代价小。推荐使用。
Wasserstein Distance
Wasserstein distance 在最优传输问题中通常也叫做推土机距离。这个距离的介绍在 WGAN 中有详细讨论。公式如下:
Wasserstein distance 可以衡量两个分布之间的相似性。距离越小,分布越相似。
特点:如果特征空间选择合适,会有一定的效果。但是计算复杂度为 O(n^3) 太高。
Fréchet Inception Distance (FID)
FID 距离计算真实样本,生成样本在特征空间之间的距离。首先利用 Inception 网络来提取特征,然后使用高斯模型对特征空间进行建模。根据高斯模型的均值和协方差来进行距离计算。具体公式如下:
μ,C 分别代表协方差和均值。
特点:尽管只计算了特征空间的前两阶矩,但是鲁棒,且计算高效。
1-Nearest Neighbor classifier
使用留一法,结合 1-NN 分类器(别的也行)计算真实图片,生成图像的精度。如果二者接近,则精度接近 50%,否则接近 0%。对于 GAN 的评价问题,作者分别用正样本的分类精度,生成样本的分类精度去衡量生成样本的真实性,多样性。
对于真实样本 Xr ,进行 1-NN 分类的时候,如果生成的样本越真实。则真实样本空间 R 将被生成的样本 Xg 包围。那么 Xr 的精度会很低。
对于生成的样本 Xg ,进行 1-NN 分类的时候,如果生成的样本多样性不足。由于生成的样本聚在几个 mode,则 Xg 很容易就和 Xr 区分,导致精度会很高。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号