万字综述之生成对抗网络(GAN)(3)
2024-06-16 来源:飞速影视
把最优判别器代入上述目标函数,可以进一步求出在最优判别器下,生成器的目标函数等价于优化 Pdata(x) , Pg(x) 的 JS 散度(JSD, Jenson Shannon Divergence)。
可以证明,当 G,D 二者的 capacity 足够时,模型会收敛,二者将达到纳什均衡。此时,Pdata(x)=Pg(x),判别器不论是对于 Pdata(x) 还是 Pg(x) 中采样的样本,其预测概率均为 1/2,即生成样本与真实样本达到了难以区分的地步。
目标函数
前面我们提到了 GAN 的目标函数是最小化两个分布的 JS 散度。实际上,衡量两个分布距离的方式有很多种,JS 散度只是其中一种。如果我们定义不同的距离度量方式,就可以得到不同的目标函数。许多对 GAN 训练稳定性的改进,比如 EBGAN,LSGAN 等都是定义了不同的分布之间距离度量方式。
f-divergence
f-divergence 使用下面公式来定义两个分布之间的距离:
上述公式中 f 为凸函数,且 f(1)=0 。采用不同的 f 函数(Generator),可以得到不同的优化目标。具体如下:
值得注意的是,散度这种度量方式不具备对称性,即 Df(Pdata||Pg) 和 Df(Pg||Pdata) 不相等。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号