万字综述之生成对抗网络(GAN)(9)

2024-06-16 来源:飞速影视
GAN的训练障碍
理论中存在的问题
经典 GAN 的判别器有两种 loss,分别是:

万字综述之生成对抗网络(GAN)


使用上面第一个公式作为 loss 时:在判别器达到最优的时候,等价于最小化生成分布与真实分布之间的 JS 散度,由于随机生成分布很难与真实分布有不可忽略的重叠以及 JS 散度的突变特性,使得生成器面临梯度消失的问题。
使用上面第二个公式作为 loss 时:在最优判别器下,等价于既要最小化生成分布与真实分布直接的 KL 散度,又要最大化其 JS 散度,相互矛盾,导致梯度不稳定,而且 KL 散度的不对称性使得生成器宁可丧失多样性也不愿丧失准确性,导致 collapse mode 现象 [7]。
实践中存在的问题
GAN 在实践中存在两个问题:
其一,GAN 提出者 Ian Goodfellow 在理论中虽然证明了 GAN 是可以达到纳什均衡的。可是我们在实际实现中,我们是在参数空间优化,而非函数空间,这导致理论上的保证在实践中是不成立的。
其二,GAN 的优化目标是一个极小极大(minmax)问题,即
,也就是说,优化生成器的时候,最小化的是
。可是我们是迭代优化的,要保证 V(G,D) 最大化,就需要迭代非常多次,这就导致训练时间很长。
如果我们只迭代一次判别器,然后迭代一次生成器,不断循环迭代。这样原先的极小极大问题,就容易变成极大极小(maxmin)问题,可二者是不一样的,即:

万字综述之生成对抗网络(GAN)


相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号