深度|2017CV技术报告之图像分割、超分辨率和动作识别(4)

2024-07-04 来源:飞速影视

深度|2017CV技术报告之图像分割、超分辨率和动作识别


图 7:SRGAN 的超分辨率任务示例,来源 Ledig et al. (2017)[70]。从左至右分别为「双三次插值法」、优化了均方误差性能的深度残差网络、深度残差生成对抗网络、原始高清图像。相关的峰值信噪比(PSNR)与结构相似性在括号中已列出。[4 倍清晰度倍增]
使用了生成对抗网络之后,系统达到了目前超分辨率技术的最先进水平:
SRGAN[71] 使用了一个判别网络,它可以区分经过超分辨率处理的图像与原始照片图像的区别。借助这个网络,系统可以为大量公开数据集上的采样图像提供和照片一样真实的纹理特征。
尽管从峰值信噪比(PSNR)标准来看 SRResNet 的表现最佳,但是就画质而言,SRGAN 的表现才是最好的,它生成了更好的纹理细节,并且得到了最高的平均主观意见分(Mean Opinion Score, MOS)。「就我们所知,这是第一个能够以*4*倍清晰度推理提升逼真自然图像的框架。」[72]
Amortised MAP Inference for Image Super-resolution[73]:提出了一个计算最大后验概率(Maximum a Posteriori,MAP)的方法(该方法使用了一个卷积神经网络)。他们的研究提出了三条优化方法,然而对于每一条来说,其目前在真实图像数据上的表现都逊于生成对抗网络。

深度|2017CV技术报告之图像分割、超分辨率和动作识别


相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号