欧盟「人脑计划」:新算法模拟生物进化,为大脑工作提供新见解(3)
2023-04-25 来源:飞速影视
惊人的创造力
使用遗传编程 (GP) 作为一种进化算法,来发现尖峰神经元网络中的可塑性规则。GP 将突变和选择压力应用于最初随机的计算机程序群,以人工进化具有所需行为的算法。考虑到数学表达式的演变,研究人员采用特定形式的 GP:笛卡尔遗传编程(Cartesian genetic programming,GCP)。
图示:笛卡尔遗传编程中数学表达式的表示和变异。(来源:论文)
研究小组用三种典型的学习场景来对抗进化算法。首先,计算机必须在不接收有关其性能的反馈的情况下检测连续输入流中的重复模式。在第二种场景下,计算机在以特定的期望方式执行时,会收到虚拟奖励。最后,在第三个「引导学习」的场景中,计算机被精确地告知其行为与预期的偏离程度。
图示:笛卡尔遗传编程进化出各种有效的奖励驱动学习规则。(来源:论文)
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号