「颠覆」北京邮电大学王敬宇教授:ChatGPT正在迅速颠覆传统搜索引擎,未来或成为新一代信息入口(2)

2023-05-01 来源:飞速影视
◎不可以因为AI替代了一部分劳动力就给它带上造成失业的大帽子,任何新技术、新产品都终将服务于社会大众。
以下为对话全文:
金融界:请您谈一下最新风口上 ChatGPT带来什么启示?将发生怎样的变革?
王敬宇:如果说AlphaGo当年跟李世石的人机大战还只是一场技术秀,可以写剧本、写代码的ChatGPT则像一把火,再度点燃了AI行业。ChatGPT这只“蝴蝶”掀起的“飓风”,最终让各大互联网企业也坐不住了,纷纷宣布了自己在ChatGPT所用的技术领域的相关布局。资本市场则以更大的热情来拥抱所有宣布与之相关的企业。从技术上来看,相较于小模型,ChatGPT依赖的是大模型,不仅能给出更准确的结果,还有更强的通用性和泛化能力。
ChatGPT背后依托的语言处理大模型(LLM)本身并非新算法技术。ChatGPT的核心是“算法 数据 算力 系统化”,前三点都谈得比较多了,而常常被忽略的恰恰是算法背后的“系统化”。从理论上看,穷尽所有的测试数据和训练材料,AI就会呈现出恐怖的准确率。而OpenAI正是沿着这个“理论上”的路径一路狂奔,它阅览了互联网上几乎所有数据,并在超级复杂的模型之下进行深度学习。OpenAI引入了人类监督员,对AI的回答进行打分,使得它在众多可能的回答中选择那些更加符合人类预期的答案。在涉及一些有关步骤的问答当中,让这个模型的语言前后逻辑更加明晰、有因果关联。高质量的数据加上充分的训练,人工和算法的有机配合,共同造就了今天的结果。ChatGPT被认为可能是迈向通用型AI的一种可行路径——作为一种底层模型,它再次验证了深度学习中“规模”的意义。
同时,重视人工智能的“系统化”或许也是给科研工作者带来的重要启示。
运行ChatGPT需要比较高的算力,GPT3的参数规模则达到1750亿,利用45万亿字节文本数据进行训练的人工智能算法模型,而GPT-4的参数可能将比它高出几个量级。这么高的算力投入也就意味着更强的聚焦性,核心技术向大公司、大团队倾斜,其他中小公司做应用级生态。一款产品出圈,表面上是短跑竞赛的结果,但实际上,任何竞赛背后都是长期性系统性的比拼。尊重规律、持续积累,如果能发挥出中国的集约化政策和资金等优势,催生出“量变引发质变”的结果,也可能创造出属于中国的人工智能领先级产品。
金融界:如何看待 ChatGPT 的应用趋势?会影响到哪些行业?如何来应用好这一新产品?存在的瓶颈会是什么?
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号