如果你爬过山,怎会不了解机器学习?(10)

2023-05-03 来源:飞速影视
图8
图8中的盒子比罗森布拉特感知机的盒子更精致。盒子接收到一个数字作为输入,并输出该数字和0中较大的那个。换句话说,如果输入是一个正数,盒子就会原封不动地输出这个数字;但如果输入是一个负数,盒子就会输出 0。
我们来试试这个装置(见图9)。假设我先向最左边一层的两个盒子分别输入1和1。这两个数字都是正数,所以第一层的两个盒子都会输出 1。再来看第二层,第一个盒子接收到的数字是 1×1 = 1,第二个盒子接收到的数字是-1×1 = -1。同理,第二层的第三个盒子和第四个盒子接收到的数字分别是 1 和-1。1是正数,所以第一个盒子输出1。但第二个盒子接收到的输入是一个负数,未能被触发,所以它输出 0。同样地,第三个盒子输出1,第四个盒子输出 0。

如果你爬过山,怎会不了解机器学习?


图9
接着看第三层,上面的盒子接收到的数字是1×1 3×0 2×1 1×0=3,下面的盒子接收到的数字是3×1−1×0−5×1−1×0=−2。所以,上面的盒子输出3,下面的盒子未能被触发,输出0。最后,第四层的那个盒子接收到的两个输入之和为1×3 1×0=3。
即使你未关注到这些细节,也没有关系。重要的是,神经网络是一个策略,它接收到两个数字作为输入,并返回一个数字作为输出。如果你改变箭头上的权重,也就是说,如果你转动14个旋钮,就会改变这个策略。图9为你提供了一个十四维空间,让你根据既有的数据从中找出最适合的策略。如果你觉得很难想象出十四维空间的样子,我建议你听从现代神经网络理论的创始人之一杰弗里·辛顿(Geoffrey Hinton)的建议:“想象一个三维空间,并大声对自己说‘这是十四维空间’。所有人应该都能做到这一点。”辛顿来自一个高维空间爱好者家族,他的曾祖父查尔斯在1904年写了一本关于如何想象四维立方体的书,并发明了“超立方体”(tesseract)一词来描述它们。不知道你有没有看过西班牙画家萨尔瓦多·达利的油画作品《受难》,其中就有一个辛顿的超立方体。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号