AI凭什么超越人类修图师?万字长文看懂美图云修AI修图解决方案(11)

2023-05-04 来源:飞速影视
2. 皱纹自动祛除
皱纹祛除主要是基于图片补全实现,将皱纹部分作为图片中的待修复区域,借助图片补全技术重新填充对应像素。目前,图片补全技术包含传统方法和深度学习两大类:
传统图片补全技术,这类方法无需数据训练,包括基于图片块 (patch)[9,11] 和基于像素 [2] 这两类补全方法。这两类方法的基本思想是根据一定的规则逐步的对图像中的受损区域进行填充。此类方法速度快,但需要人工划定待修复区域,适用于小范围的图像修复,受损区域跨度较大时容易出现模糊和填充不自然的情况。基于深度学习的 Inpainting 技术 [12,13,14,15],这类方法需收集大量的图片数据进行训练。基本思想是在完整的图片上通过矩形(或不规则图形) 模拟受损区域,以此训练深度学习模型。现有方法的缺陷在于所用数据集及假定的受损区域与实际应用差异较大,应用过程易出现皱纹无法修复或是纹理不清,填充不自然的情况。鉴于影楼用户对于智能修图的迫切需求,美图影像实验室 MTlab 自主研发了一套能够适应复杂场景的的皱纹祛除方案。
MTlab 提出的智能皱纹祛除方案,依靠海量场景的真实数据,在识别皱纹线的基础上借助 Inpainting 的深度学习网络予以消除,提供端到端的一键式祛除皱纹,使其具备以下 2 个效果:
一致性:填充区域纹理连续,与周围皮肤衔接自然。鲁棒性:受外部环境影响小,效果稳定。MTlab 针对该问题收集的海量数据集能够涵盖日常生活场景中的多数场景光源,赋能模型训练最大驱动力,保障模型的性能,较好的解决了上述问题,并成功落地于应用场景。
针对现有方案存在的缺陷,MTlab 根据皱纹的特点设计了皱纹祛除模型(WrinkleNet)。将原始图片和皱纹 mask 同时送入祛除模型,即可以快速的完成祛除,并且保持了资深人工修图在效果上自然、精细的优点,在各种复杂场景都有较强的鲁棒性,不仅对脸部皱纹有效,同时也可用于其他皮肤区域(如颈部)的皱纹祛除,其核心流程如图 14 所示。

AI凭什么超越人类修图师?万字长文看懂美图云修AI修图解决方案


相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号