AI凭什么超越人类修图师?万字长文看懂美图云修AI修图解决方案(12)

2023-05-04 来源:飞速影视
图 14. 祛皱核心流程
数据集制作:
如前所述,数据集会极大的影响深度学习模型的最终效果,目前主流的图像补全模型多采用开源数据集,使用矩形或不规则图形模拟图像中待补全的区域。针对皱纹祛除任务这么做是不合理的。一方皮肤区域在颜色和纹理上较图片其他区域差异较大,另一方面皱纹多为弧形细线条,其形状不同于已有的补齐模式(矩形、不规则图形),这也是导致现有模型效果不够理想的原因之一。因此,在数据集的准备上,MTlab 不仅收集了海量数据,对其皱纹进行标注,同时采用更贴近皱纹纹理的线状图形模拟待填充区域。
生成网络设计:
生成网络基于 Unet 设计,鉴于直接使用原始的 U-Net 网络生成的图像会存在纹理衔接不自然,纹理不清的问题,因此对其结构做了一些调整。1)解码的其输出为 4 通道,其中一个通道为 texture 回归,用于预测补齐后的图片纹理;2)在 Unet 的 concat 支路加入了多特征融合注意力模块(简称 FFA)结构,FFA 的结构如图 15 所示,该结构旨在通过多层特征融合注意力模块,如图 16 所示,提高模型对细节纹理的关注度。

AI凭什么超越人类修图师?万字长文看懂美图云修AI修图解决方案


图 15. 生成网络结构图

AI凭什么超越人类修图师?万字长文看懂美图云修AI修图解决方案


图 16. 多特征融合注意力模块
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号