实录|旷视研究院详解COCO2017人体姿态估计冠军论文(PPT 视频)(7)
2023-05-04 来源:飞速影视
Crop augmentation
先crop,后padding再resize,这样输入图片会保持长宽比。我们做过类似的实验,抠图直接resize到输入尺寸,这样图片会损失长宽比,结果会差一点。然后,我们会先做加入Random scales,把框进行随机扩大或者缩小。
Rotation
目前主流的处理方式rotate负30度到正30度,这次我们用的是负45度到正45度。这个Rotation一般来说会有提升但是不会很大,主要是用在一些比较极端的情况下,比如人是斜着的。
在后面做实验的时候,发现了另外一种思路:直接把人旋转,检测出人的头,或某个部位之后,按照一定的角度把人转正。
Large Batch
Large Batch在 keypoints上也是有用的,大概能提到0.4到0.3的点的AP。
模型融合
我们提交结果的时候做过模型融合,使我们在minival上大概能提升到1到1.5个点。
COCO比赛的结果
在COCO test-dev数据里,我们有两个网络,一个是单模型结果,一个是有模型融合结果。单模型的结果也基本比test-challenge中后几位都要高,而且我们没有用更多的数据。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号