2022年中国知识图谱行业研究报告(19)
2023-05-20 来源:飞速影视
储备培养行业专家与技术专家
缺乏深厚行业专家与技术复合型专家,需做好储备培养工作
目前知识图谱行业整体处于开发资源待完善的局面,行业与技术专家资源稀缺属于其中的一部分情况。一方面,缺少具备深厚行业经验的专家。由于行业知识图谱与行业的关联度高,开发人员需要迅速了解业务与客户需求,在行业专家的指导下完成Schema构建,若涉及到文本抽取工作还需要行业专家进行数据标注,而各行各业中的行业专家往往仅有极少数。对此,供给方企业需要锁定行业业务的强项领域、提前招募培养行业专家、进行内外协作,以完成行业专家储备。另一方面,缺少技术复合型专家。整个知识图谱应用生产流程不仅涉及知识图谱算法,生产流程的靠前环节还涉及到底层的图数据存储与数据治理、NLP文本抽取和语义转换,同时各环节都渗透着机器学习这一底层人工智能技术。这意味着整个生产流程需要多个技术领域的工程师协同合作,而对整套技术均有了解的技术专家数量稀缺。
对此,供给方企业需要在项目中让技术实施人员沉淀复合型知识经验,让企业内部多方的技术专家进行错位交流,进行业务培训,以完成技术复合型专家的培养。
研发国产化图数据库
特殊的图存储结构对底层存储技术提出升级需求
由于知识图谱是二维链接的图结构而非行或列的表结构,其需以图数据的形式描述并存储,该方式能直接反应知识图谱的内部结构,有利于知识查询,结合图计算算法进行知识的深度挖掘与推理。满足这一存储要求的数据库为近几年兴起的图数据库。相比于传统的关系型数据库,图数据库的数据模型以节点和边来体现,可大大缩短关联关系的查询执行时间,支持半结构化数据存储,展示多维度的关联关系。高效便捷的新技术往往意味着更高的研发门槛。从时间与归属方面看,全球第一款商用图数据库为2007年诞生的Neo4j,往后十年间的图数据库研发商基本分布于海外,而我国第一款商用图数据库为2017年上线的Galaxybase,比海外布局晚了近十年。从受欢迎度来看,Neo4j以59.4分一骑绝尘,占领着图数据库市场的高地。随着国内各行业知识图谱应用的加深,传统关系型数据库的不足逐渐显现,研发国产化底层图数据库成为了推进知识图谱应用的一大底层技术关键点,同时也从国家战略角度推动国产信创核心自主可控的步伐。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号