UC伯克利发现「没有免费午餐定理」加强版:每个神经网络,都是一个高维向量(9)

2023-04-28 来源:飞速影视
图 3:为四种训练集大小不同的布尔函数训练神经网络的泛化性能度量。无论是对 MSE 还是可学习性而言,理论预测结果(曲线)与真实性能(点)都能够很好地匹配。
5核回归的没有免费午餐定理
除了对泛化性能的近似,本文作者还针对核回归问题提出了一种加强版的「没有免费午餐定理」。经典的「没有免费午餐定理」的结论是:由于对所有可能函数的相互补偿,最优化算法的性能是等价的。

UC伯克利发现「没有免费午餐定理」加强版:每个神经网络,都是一个高维向量


图 4:经典的没有免费午餐定理(来源:《机器学习》,周志华)
简单地说,如果某种学习算法在某些方面比另一种学习算法更优,则肯定会在其它某些方面弱于另一种学习算法。具体而言,没有免费午餐定理表明:
1)对所有可能的的目标函数求平均,得到的所有学习算法的「非训练集误差」的期望值相同;
2)对任意固定的训练集,对所有的目标函数求平均,得到的所有学习算法的「非训练集误差」的期望值也相同;
3)对所有的先验知识求平均,得到的所有学习算法的「非训练集误差」的期望值也相同;
4)对任意固定的训练集,对所有的先验知识求平均,得到的所有学习算法的的「非训练集误差」的期望值也相同。
对于核回归问题而言,所有可能的目标函数

UC伯克利发现「没有免费午餐定理」加强版:每个神经网络,都是一个高维向量


的期望满足:

UC伯克利发现「没有免费午餐定理」加强版:每个神经网络,都是一个高维向量


相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号