ChatGPT红与黑:复活AI投资热情,复刻资本军备竞赛(3)

2023-04-29 来源:飞速影视
在宁畅副总裁兼CTO赵雷看来,ChatGPT最大的需求肯定是算力,若要实现理想化人工智能的算力需求,短时间来看也需要三个数量级的算力,至少是目前行业平均水平的百倍。另外,ChatGPT是一个TB级的运算训练库,目前需要几十到几百台GPU或几百台一个级别服务器的体量才能够做到。
云九资本执行董事沈文杰表示,ChatGPT展示内容的高效性和其“内嵌”的服务模式会推倒、重建很多商业模式,甚至可能包括当下最大的商业模式之一——搜索。算力成本可能是当下最棘手的问题,算力的总需求肯定会被推到远超当下全部的程度,需要算力 算法 商业模式共同解决这个问题。
壁仞科技方面也认为,ChatGPT的“爆火”对于国内算力芯片厂商而言,意味着未来将诞生一个具有巨大潜力的应用市场。当然,目前这一领域依然由国际厂商的成熟算力产品所垄断,国内厂商要想在这一领域实现突破,就要利用好自身优势,与国内的算法、模型开发者,以及应用开发者保持密切的合作,并根据应用市场的需求优化自身产品。只有这样,才能在大参数模型的大规模商业化进程中“分一杯羹”。
算法层面,赵雷表示,GPT是一套算法模式,经历GPT1至GPT3.5的发展,算法门槛仍存在,但并不高。深度学习或机器学习算法存在多种算法,每种算法对应不同领域,这方面中美差距或头部公司之间的差距并不大。
另外,赵雷称,除算力之外,另一个核心因素是训练模型库,100亿条人类的对话和10000亿条人类的对话,相同的算力下,后者需要更多的时间,但它的训练精度一定会更好。
巨头与创业者冲入技术军备竞赛
目前,行业已经将ChatGPT的成本问题算清楚:GPT3训练一次的费用约为460万美元,ChatGPT单轮对话平均费用在0.01美元至0.2美元之间。即便如今声名成功如OpenAI,其2022年收入3000万美元,但净亏损高达5.445亿美元。高昂的成本决定了这不是一项创业公司随随便便就能上牌桌的竞赛。
OpenAI创始人山姆·阿尔特曼(Sam Altman)此前曾表示,预计将来会出现几个大型的基础模型,开发人员都将基于这些基础模型研发AI应用。但目前的情况依然是某一家公司开发出一个大型语言模型,然后开放API供他人使用。
阿尔特曼认为,将来在基础模型和具体AI应用研发之间会有一个中间层:出现一批专门负责调整大型模型以适应具体AI应用需求的初创企业。能做好这一点的初创公司将会非常成功,但这取决于它们能在“数据飞轮”上走多远。所谓“数据飞轮”,是指ChatGPT带来的最大变革——建立起用户真实反馈与模型迭代之间的飞轮,反馈越多,模型迭代速度越快。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号