解读2016诺贝尔化学奖开启分子机器时代(6)
2023-05-02 来源:飞速影视
特劳纳也希望这些光敏型化合物可以让患有黄斑变性和色素性视网膜炎(这些疾病会破坏眼内的视杆及视锥细胞)的人重见光明。“这是极易实现的,因为病灶位于眼部,你不需要担心如何引入光信号。”特劳纳说道。在去年的实验中,他向盲鼠的眼睛里注射了一种叫DENAQ的光敏型药物分子,使盲鼠在几天的时间里恢复了部分视觉(可以分辨白天与黑夜)。他的团队目前正尝试把这项技术推广到灵长类动物身上,希望在两年之内开展人体试验。
特劳纳和克莱因都认为,这项研究最主要的挑战在于说服谨小慎微的医药行业,让他们相信光敏型药物有着巨大潜力,即便它们还没有人体上的使用记录。特劳纳说:“一旦他们看清了这一领域的价值,我们的研究就能更好地开展下去。”
分子行走装置
早在生物从海洋进化到陆地上之前,细胞内就已形成了一套可自行“行走”的细胞机器。一个经典的例子就是具有双叉形结构的驱动蛋白——在进行物质转运时,它可以沿着细胞内的微管骨架移动。
受驱动蛋白的启发,研究人员利用DNA分子构建了一个人造行走装置。这个分子行走装置起先通过与互补DNA链的结合锚定在固定的轨道上。当在体系中加入竞争性的DNA链后,分子行走装置得以释放并向前行进一步。这一领域最激动人心的例子来自于纽约大学纳德里安·西曼(Nadrian Seeman)于2010年公布的一项研究。他所设计的DNA行走装置有四只“脚”和三只“手”,当这一装置绕着由折叠DNA链组成的方形结构移动时,它可以利用自己的“手脚”搭载金纳米颗粒。
DNA行走器的研究很快就扩展到了其他实验室。但是,如果不给这些行走器安装内置的棘轮系统,使它们可以在必要的时候停下来向后走,那么这些行走器就只能漫无目的地四处游荡。对于大多数分子行走器来说,棘轮系统可以通过控制固定或松开行走器“腿部”的化学反应的相对速率来实现,而前进的驱动力则可以通过布朗运动的推力来提供。
在过去几年中,详细的化学实验研究和分子动力学模拟数据已经证明,前文提及的“布朗棘轮”的概念正是所有化学驱动的分子机器以及很多生物马达运行的重要基础。例如在2013年,密歇根大学安阿伯分校的化学生物学家尼尔斯·瓦尔特(Nils Walter)领导的研究小组就发现,剪接体(spliceosome)也是按照相同的机理工作的。剪接体是在遗传信息被翻译成蛋白质之前,对RNA进行一系列剪接修饰的一种细胞机器。“驱动蛋白正是使用的这样的工作机制,核糖体也是,剪接体也是。”瓦尔特补充道。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号