解读2016诺贝尔化学奖开启分子机器时代(7)

2023-05-02 来源:飞速影视
上述研究表明,生物机器与人工合成的分子机器实质上遵守着相同的法则。因此,两个领域的研究人员可以在今后的工作中相互取长补短。“就目前来看,两个领域在总体上还是相互独立的,”瓦尔特说,“但我认为如果两个领域内的研究人员能够一起合作,下一个突破一定会到来。”
微米火箭
与此同时,受1966年风靡全球的科幻电影《神奇旅程》(Fantastic Voyage)中“微型医疗潜艇”的启发,化学家们设计了一个由微米颗粒与导管组成的阵列,这个阵列系统在液体中可以像火箭一样迅猛移动。
这些“微米火箭”的推动力有的来源于自身携带的催化剂,后者可利用周围的液体(通常是过氧化氢水溶液)产生一连串气泡;还有的则是直接利用光能或外加的电磁场来获取能量,而且外加的电磁场还能起到控制方向的作用。“构成‘微米火箭’的这些纳米马达每秒行进的距离是自身长度的1 000多倍,这太让人难以置信了!”加利福尼亚大学圣地亚哥分校的纳米工程师约瑟夫·旺(Joseph Wang)兴奋地说道。他认为该器件最具前景的应用方向是药物的快速释放以及环境污染物的低成本清理。当然,业内的许多专家都谨慎地表示,现在就讨论这些纳米马达的应用是否会比传统的方法更好还为时尚早。
然而,过氧化氢作为一种强氧化剂是不可能在人体内使用的。约瑟夫·旺也坦率地表示:“如果所有的分子推进装置都建立在过氧化氢溶液的环境中,我们确实应该对该领域的前景持怀疑态度。”但就在去年12月,他公布了一种适用于动物活体检测的微米级马达。它由一根长约20微米的塑料导管构成,含有一个锌质的核。马达的动力来自于锌与胃酸反应产生的氢气。
含有马达的导管可以在小鼠的胃中安全推进约10分钟的时间。接下来的实验中,约瑟夫·旺用这些含有马达的导管向小鼠胃部周围的组织运输金纳米颗粒。结果,喂食这些金纳米颗粒-导管复合物的小鼠,其胃粘膜上的金含量要比直接喂食金纳米颗粒的对照组高三倍。由此,约瑟夫·旺认为,如果把药物或成像剂装到微米“火箭”上服用,可以让它们更加快速而有效地到达胃组织内部。“在接下来的五年内,我们会将研究转向实际的体内应用阶段,”约瑟夫·旺说,“这真的会是一趟神奇旅程。”
目前,这些微米级火箭与分子机器的研究还鲜有交叉,但克莱因相信它们之间的联系会越来越多。“比方说,在微型马达的表面结合一个光敏型的分子开关就能为它的移动提供更好的控制。”克莱因建议道。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号