生活在最冷地区的雪猴通过“钓鱼”来生存从河流中捕捉活体动物(18)
2023-05-03 来源:飞速影视
那么,黑洞呢?
必须强调的一点是,所有关于恒星的讨论并不只是为了好玩,而是在为我们讨论黑洞奠定必要的基础。当然,黑洞很难被探测到,因为它们不会发光,但它们背后的物理原理以及它们在星系中的运动规律和恒星是一样的。原因很简单:宇宙中,尤其是银河系中我们所在的部分,几乎每一个黑洞都是诞生于一颗原本已经存在的恒星。
当然,确实存在一些超大质量黑洞,但它们大多只存在于星系的中心,距离我们有几万光年远。另一方面,对于原始黑洞,目前还没有任何相关的观测证据。也许原始黑洞的数量更多,质量更小,但在理论上有一些严重的问题阻碍了它们的存在。
在一个黑洞与地球相撞的过程中,我们不会从黑洞本身得到任何预警信号,但它会扭曲来自背景天体的光,进而向我们揭示它的存在。
因此,宇宙中两种最常见的黑洞形成方式便是,要么有一颗足够巨大的恒星,其核心坍缩形成一个黑洞;要么由两颗中子星碰撞、合并,达到某些质量阈值,进而形成一个黑洞。
在理解了这一点之后,我们就可以估算出黑洞相对于恒星的数量。在所有曾经形成的恒星中,大约0.12%的恒星,或者说大约800颗恒星中,会有一颗质量足够大的恒星,当它结束生命周期时,将产生一个恒星质量黑洞:质量大于3倍太阳质量,但至多不超过几百倍太阳质量。有些人认为,中子星的合并——已被激光干涉引力波探测器如LIGO和Virgo探测到——可能也会产生与大质量恒星同样多的黑洞,尽管处于较低的质量范围。
这意味着,以最乐观的情况估计,现在有大约10亿个黑洞在银河系中运行,相比之下,恒星的数量约为4000亿颗。这是一个令人难以置信的黑洞数量,但即使是在天文学的时间尺度下,地球与黑洞相互作用的几率仍然是极低的。事实上,如果我们只考虑一个黑洞与地球碰撞的情况,概率是极小的:在地球历史中约为400亿分之一;相当于每年10^20分之一,与连续三次赢得乐透大奖的概率差不多。
当一个微引力透镜事件发生时,随着中间质量穿过或接近恒星的视线,来自背景恒星的光会被扭曲和放大。引力的作用使光和我们眼睛之间的空间发生了弯曲,从而产生一种特殊的信号,揭示行星、黑洞或其他大质量物体的质量和速度。
碰撞并不是唯一的威胁
当然,黑洞并不需要与地球相撞才能构成威胁。如果距离地球足够近,黑洞就可以:
(1)通过引力作用破坏地球的轨道;
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号