Momenta详解ImageNet2017夺冠架构SENet
2023-05-04 来源:飞速影视
本文由机器之心编辑,“机器之心”专注生产人工智能专业性内容,适合开发者和从业者阅读参考。点击右上角即刻关注。
本届 CVPR 2017大会上出现了很多值得关注的精彩论文,国内自动驾驶创业公司 Momenta 联合机器之心推出 CVPR 2017 精彩论文解读专栏。除此之外,Momenta 还受邀在 CVPR 2017 的 ImageNet Workshop 中发表演讲,介绍 Momenta 在ImageNet 2017 挑战赛中夺冠的网络架构SENet。本文作者为 Momenta 高级研发工程师胡杰。
我是 Momenta 的高级研发工程师胡杰,很高兴可以和大家分享我们的 SENet。借助我们提出的 SENet,我们团队(WMW)以极大的优势获得了最后一届 ImageNet 2017 竞赛 Image Classification 任务的冠军,并被邀请在 CVPR 2017 的 workshop(Beyond ImageNet)中给出算法介绍。下面我将介绍我们提出的 SENet,论文和代码会在近期公布在 arXiv 上,欢迎大家 follow 我们的工作,并给出宝贵的建议和意见。
我们从最基本的卷积操作开始说起。近些年来,卷积神经网络在很多领域上都取得了巨大的突破。而卷积核作为卷积神经网络的核心,通常被看做是在局部感受野上,将空间上(spatial)的信息和特征维度上(channel-wise)的信息进行聚合的信息聚合体。卷积神经网络由一系列卷积层、非线性层和下采样层构成,这样它们能够从全局感受野上去捕获图像的特征来进行图像的描述。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号