Momenta详解ImageNet2017夺冠架构SENet(5)
2023-05-04 来源:飞速影视
在训练中,我们使用了一些常见的数据增强方法和 Li Shen 提出的均衡数据策略。为了提高训练效率,我们使用了我们自己优化的分布式训练系统 ROCS, 并采用了更大的 batch-size 和初始学习率。所有的模型都是从头开始训练的
接下来,为了验证 SENets 的有效性,我们将在 ImageNet 数据集上进行实验,并从两个方面来进行论证。一个是性能的增益 vs. 网络的深度; 另一个是将 SE 嵌入到现有的不同网络中进行结果对比。另外,我们也会展示在 ImageNet 竞赛中的结果。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号