Nature计算科学综述:经由准实验,从观察数据中推测因果关系(8)
2023-05-20 来源:飞速影视
然而,尽管每当有一个确定干预与否的阈值时,尝试和应用断点回归分析是非常诱人,但是在一些似是而非的情况下,这些假设并不成立。在实践中需要仔细考虑刚好高于或低于阈值的单位是否具有可比性这一假设,因为当研究中的个体知道阈值和分数时,违规行为经常出现。例如,一个人可以研究补助金对年轻科学家未来学术成就的影响,利用国立卫生研究院的薪水线作为阈值研究补助金对学术成就的因果关系,进行断点回归分析[40, 41]。然而,随着薪水阈值的公布,很可能那些知道自己刚刚错过阈值的科学家们比那些刚刚到达阈值的科学家们更有动力去努力工作,这可能会造成对未来成功的估计的偏差,因为刚刚到达阈值上下的科学家们在动机上存在差异。
只要这些假设是合理的,断点回归分析就有可能广泛地适用于因果效应估计,因为在许多现实数据设置中都存在阈值(表1),即使是在地理界限等非常规设置中也是如此[42]。
5. 准实验策略之双重差分
第三种标准的计量经济学方法称为双重差分(Difference-in-differences),通过观察治疗组和对照组,并比较他们随着时间推移的结果趋势,来解决观察数据中的混杂因子。研究人员对接受干预的治疗组和不接受治疗的对照组在治疗前(Y1)和治疗后(Y2) x 的时间段内的结果,对 y 进行了测量。治疗组的单纯差异 Y2,治疗 -Y1,治疗可作为 x 的因果效应的估计,但它可能被未观察因素或时间效应所混淆。双重差分的思想是使用差异 Y2,控制 -Y1,控制组作为混杂影响治疗组的估计,通过减去这第二个差异来校正这个影响(图4a)。
图4. 双重差分法示意图
图A:双重差分的图形表示,其中控制组和治疗组都受到混淆因子的 Z1 的影响,但他们在治疗前和治疗后的差异,可以对得到对结果 y 的无偏估计。研究人员必须选择一个适当的控制组,使任何混杂因素都同时影响这两组(图A中只影响治疗组的 Z2的虚线的存在将违反这一规定)。图B:在模拟数据中,随着时间的推移,治疗组(橙色)和对照组(蓝色)的结果 y 的散点图(平行趋势保持),干预 x 被应用于治疗组(虚线)。图C:在违反平行趋势假设的模拟数据中,治疗组(橙色)和对照组(蓝色)随时间的结果 y 散点图。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号