量子信息的过去、现在和未来(4)

2023-05-21 来源:飞速影视
2. 量化信息
信息论建立在香农在20世纪40年代奠定的基础上[15]。香农根据消息可以被压缩到多少比特而不损失任何内容来量化一段消息所传达的信息。他还量化了通过嘈杂信道从发送方传输到接收方的信息量,以便接收方能够以可忽略不计的错误率解码信息。
这一理论引出了纠错码(error-correcting code)的概念,它可以保护冗余编码的信息免受噪声的破坏性影响[16]。这又反过来表明,即使计算硬件不完美,也可以可靠地执行计算[17]。纠错码在现代通信系统(如移动电话蜂窝网络)中也至关重要。
3. 量子信息
量子信息论的起源可以追溯到爱因斯坦及其合作者在20世纪30年代的观察[18],他们注意到量子系统各部分之间的关联可能具有反直觉的性质,这种现象被薛定谔称为“量子纠缠”[19]。John Bell在20世纪60年代正式提出了这一概念[20],他认为共享量子纠缠的博弈者如果共享纠缠的量子比特而不是关联的经典比特,则能以更高的成功率赢得合作博弈[21,22]。从这个意义上讲,量子纠缠是一种有价值的资源, 可以用来执行有用的任务。
在70到80年代,人们认识到,量子通信,诸如通过光纤或自由空间发送光子,可能对密码学有用。因为安全性可以基于量子物理原理,而非潜在对手可用的计算资源有限[23–25]。这其中的关键原理是,与经典比特相比,未知的量子态无法被准确复制 [26,27]。事实上,对手获取含有量子信号内容的信息会不可避免地产生干扰,这在原则上是可以检测到的。
同样在70年代,测量和处理量子态的一般理论被建立起来,包括测量量子系统时可以获得多少经典信息的基本限制[28,29]。
4. 量子计算
许多粒子组成的复杂的高度关联的量子系统的性质很难计算,这是量子力学先驱们都知道的一个早期认识。在20世纪80年代早期,费曼[30]和曼宁(Manin)[31]提出了这样一种观点:对于那些在传统计算机上难以被计算的性质,如果我们改用量子设备来计算,可能很容易。这导致了对扩展的丘奇-图灵论题的修改,其修改后的形式可以被非正式地表述为“量子计算机可以有效地模拟自然界中发生的任何过程”[32]。现在,人们普遍认为(尽管还未从第一性原理得到证明),量子计算机在某些问题上相比传统计算机具有指数优势,这些问题可能包括化学和材料科学感兴趣的问题。也就是说,使用量子计算机可以在系统大小多项式级的时间内执行的计算,需要花费传统计算机指数级的时间。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号