中国“天宫”:世界航天丰碑(3)
2024-06-16 来源:飞速影视
空间站重在科研应用,我们所有的努力都旨在为科研应用打牢基础,让平台、结构、能源、信息、控制、生命保障等功能经得起考验,做到令人放心,同时赋予其足够的扩展能力和适应能力。
当然,要做到令人放心并不容易,在这个过程中,我们遇到了很多难题,其中有两类颇具代表性。
第一类与长寿命、长周期、长时间有关。一些材料在前期表现很好,却在工程研制中出问题,导致做长寿命试验时未能抵近极限。一些小尺寸材料做防原子氧处置效果很好,但是在用一些新方法、新技术在某些大尺寸材料上做,就出现瑕疵。
第二类与在地面无法完全真实模拟某些空间环境有关。由于地面仿真手段有限,对仿真对象了解不够深入,导致仿真模型不够准。比如在液体收集管理方面,我们在地面试验中做到收集率达到99%,在太空中即使达到98%也会造成麻烦,因为液体残留量会日积月累。
航天领域老前辈们常说:“识别关键技术进行攻关。”面对难关,我们不仅要攻破技术原理,而且要把工程实现的全过程走通,把每件产品质量做到极致,把各种状态摸透。可以说,我们一直在努力识别“未知”,量化“已知”并通过各种分析验证,借助相关数据反馈,把难关逐一攻克。
“天宫”的实验舱上有一对硕大的太阳翼,可以像大风车一样360°转动,非常炫酷。这对太阳翼就是我们用上述方式攻克难关取得的一大硕果。
该太阳翼尺寸特别大,单翼长约27米,展开面积138平方米。如此巨型的翼在轨展开后会产生怎么振动呢?由于在地面无法进行等尺寸动力学特性验证,我们只能从局部入手,对太阳翼伸展机构做单独的动力学特性验证,再通过仿真、数值补偿等办法推出完整的动力学特性,再结合核心舱的一套辨识系统,监测其太阳翼在轨振动、扰动情况并测出振动频率。据此,我们在实验舱发射前对其太阳翼控制参数、仿真模型参数进行了修正。最终,实验舱振翅高飞,助力中国“天宫”遨游太空。
忙验证,三线并行
天和核心舱在发射入轨后约一年间,在两艘载人飞船和两艘货运飞船配合下,完成了“关键技术验证阶段”。这一阶段是系统工程一个生命周期寻求满意解的“最后一公里”。对于空间站建造来说,在该阶段有空间站推进剂补加、再生生保、舱外操作、在轨维修等7大关键技术要在轨验证。
再生生保即再生式生命保障是人类实现中长期载人飞行最核心的关键技术之一,既受微重力环境影响,又有时间效应。在空间站微重力环境下,水处理、尿处理、电解制氧等构成的自我循环系统与在地面的表现不同,同时需要足够长的时间才能建立起物质平衡,这就需要航天员在轨生活数月进行验证。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号