因果推理“三问”:是什么?为什么需要?如何使用?(6)
2023-04-29 来源:飞速影视
否则,我们可以寻求其他解决方案。处理内生性问题总是很麻烦。除了包括所有混淆变量和引入一些随机化外,回归不连续和工具变量是解决内生性问题的另外两种方法。
1、回归不连续
回归不连续是在一个分界点测量干预效果。用一个例子会更容易理解。假设我们想估计发放奖学金对学生成绩的影响。简单地估计有奖学金和没有奖学金的学生之间的成绩差异,会因为内生性而使估计结果出现偏差。获得奖学金的学生即使没有奖学金,也更有可能获得更好的成绩。如果我们有一个给奖学金的临接点,我们可以利用回归不连续来估计奖学金的效应。例如,如果我们给成绩高于80分的学生发放奖学金,那么我们就可以估计成绩接近80分的学生的成绩差异。这背后的直觉是,在影响成绩的其他特征方面,得到79分的学生很可能与得到81分的学生相似。对于成绩在79到81之间的学生来说,被分配到干预组(有奖学金)和对照组(没有奖学金)是大致随机的。因此,我们只能看这个子人群的成绩差异来估计治疗效果。更多详情请查看维基百科页面。
2、工具变量
工具变量指的是与自变量X高度相关,但与因变量Y不直接相关的变量,它们的关系就像下图。
工具变量
由于工具变量与结果变量并不直接相关,如果改变工具变量引起结果变量的变化,那一定是干预变量的原因。例如,在估计教育对未来收入的影响时,常用的工具变量是父母的教育水平。父母的教育水平与孩子的教育水平高度相关,而与孩子的收入并不直接相关。为具体的研究问题寻找工具变量是很困难的,它需要对相关文献和领域知识有充分的了解。在得到工具变量后,我们可以用2SLS回归来检验这个工具变量是否好用,如果好用,处理效果如何。详情请参考维基百科页面。
这些就是因果推理的what、why和how。希望本文可以帮助你总结基本概念和技术,感谢您的阅读。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号