逻辑的极限与数学的困境,罗素用了362页才推导出1 1=2(6)

2023-04-29 来源:飞速影视
可计算的是什么?
即使我们满足于一个不完备的形式系统,是否存在一个通用证明机制来解决判定问题?在深入研究这个问题之前,我们需要回答什么是“纯粹的机械过程”。英国数学家阿兰·图灵(Alan Turing, 1912-1954)定义了一个“纯机械过程”的数学模型。模型中定义的机器会扫描被分割成方块的假想磁带。根据规则表和它自己的内部状态,它接下来在方块上写一个符号,然后要么保持不变,要么向右或向左移动一个方块。这个机器模型后来被称为图灵机,他用它来进行数学论证,而不是制造一台真正的计算机。一般认为宇宙中的一切都是可计算的,当且仅当它可以简化为图灵机。这被称为丘奇-图灵假说。上面提到的规则表现在被称为“计算机程序”。
停机问题
在定义了图灵机之后,图灵进一步证明了希尔伯特通用证明机制的不存在性。受到哥德尔的编号方案的启发,图灵将机器编码为数字,这样机器就可以被研究为数字,这些数字可以作为其他机器的输入。现在图灵可以提出停机问题了:有没有一种机器N,可以决定是否有任何机器在给定的输入下停止或永远循环。图灵指出,仅仅是这种机器N的存在就会导致矛盾。

逻辑的极限与数学的困境,罗素用了362页才推导出1 1=2


1954年,NACA“计算机”与显微镜和计算器一起工作。图灵假设有一个特殊的机器M,它的工作与N的工作完全相反。如果N判定一台机器在将自己作为输入时停止,M将永远循环。另一方面,如果N判定一台机器永远循环,在这种情况下M将停止。这样,你可以说M是被设计来故意破坏N的。现在的问题是:当特殊机器M将自己作为输入时,它会停机吗?
如果M在M上停止,根据M的定义,M将永远循环——矛盾如果M在M上永远循环,M将停止——另一个矛盾这个自我参照悖论如下所示:

逻辑的极限与数学的困境,罗素用了362页才推导出1 1=2


相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号