逻辑的极限与数学的困境,罗素用了362页才推导出1 1=2(4)
2023-04-29 来源:飞速影视
希尔伯特期望他所有问题的答案都是肯定的,这将完全消除直觉的必要性,使数学不再具有直觉性。在他对形式理论的乐观中隐含着他的实证主义,即所有数学问题都可以被解决的信念。他的名言
我们必须知道,我们将知道(Wir müssen wissen, Wir werden wissen)
镌刻在他的坟墓上。希尔伯特和他的同事被称为“形式主义者”。
希尔伯特认为,通过从一组一致的公理开始,一个形式理论可以是完整的,自我验证的。因为一个正式的理论不应该被人类解释,而是被机械地证明,所以它被称为一个正式的“系统”。将这种系统称为“正式”意味着以前对同一主题的处理是“非正式的”。关于他的欧几里得几何形式理论,希尔伯特曾经说过,与其谈论点、线、面,还不如谈论桌子、椅子和酒杯。
希尔伯特的“形式”数论罗素认为数学是毫无意义的符号游戏,而希尔伯特则希望游戏本身能发挥作用。如果希尔伯特的宏伟愿景是正确的,一个正式的系统将总结过去,并确定数学的未来。具有讽刺意味的是,希伯特在这方面可能被自己的直觉误导了。
哥德尔:数学家的回归
库尔特·哥德尔库尔特·哥德尔(1906-1978),奥地利裔美国逻辑学家。他在完备性定理中证明了一阶逻辑的符号规则覆盖了所有有效的逻辑推理,使希尔伯特程序看起来很有前途。然而,哥德尔的不完备性定理会破坏希尔伯特程序。他发现,有了后来以他的名字命名的编号方案,他可以把构成数字正式系统的数学表述表示为数字本身。这样,一个被认为可以证明数字事实的正式的数字系统,就可以证明关于它本身的事实。在哥德尔的编号下,一个正式的数字系统成为自我参照,如下所示:
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号