助力企业数字化转型,知识图谱为应用而生|爱分析报告(28)

2023-04-30 来源:飞速影视
认知智能相较于感知智能时代的一大特点为计算机的推理判断能力,将有效数据与相关结论关联,形成有效判断。辅助操作者决策类的应用将在未来的认知智能时代有广泛应用,而作为构建此类应用的底层技术,知识图谱也将高速发展。
4.2 新场景:知识图谱将在垂直领域诞生更多应用场景
知识图谱技术未来在垂直领域应用主要有两个方向:1)目前已有应用的行业将拓展应用场景与应用领域;2)未有知识图谱应用的行业将学习相似行业的成功经验复制应用。
针对目前已有应用的行业,知识图谱技术将通过关联分析、语义识别、智能搜索、推理决策、知识库管理等诸多应用功能与用户需求发生“碰撞”,产生新的应用场景。同时,行业内知识图谱的整体搭建速度也会更快,成熟度更高,搭建成本降低,在此行业知识图谱技术已广泛应用时,将会出现功能完整的通用性知识图谱产品,知识图谱产品将向普惠方向发展,赋能行业内中小用户;
针对目前未有知识图谱应用的行业,主要原因有三点:1)行业内数据整体水平参差不齐,行业数字化进程较慢;2)劳动密集型产业,行业知识积累与管理对于行业整体影响较小;3)整体行业经济不景气,对于数字化投资有限,无专项资金支撑知识图谱构建;
针对此类行业,随着行业数字化转型的加快,未有知识图谱应用的行业将学习相似行业知识图谱产品的成功案例,复制到本行业中。但应注意,知识图谱技术有较强的领域性,在项目实施过程中需要行业用户与厂商共同探索在新行业内的知识图谱技术应用。
4.3 新融合:多技术融合将成为未来主流趋势
知识图谱本身是一种语义网络,属于泛自然语言处理技术,发展至今,知识图谱与NLP技术有千丝万缕的联系。同时,在未来认知智能,乃至行动智能的时代,人工智能技术的协同融合趋势将更加明显。
由于知识图谱的结构特殊性,随着数据量的增大,目前知识图谱的跨库应用能力较弱,对知识图谱进行分布式存储将成为重要研究方向。未来分布式的知识图谱存储结构将有效地解决知识图谱负载与存储模型的问题,更好地应对未来更大数据量的知识图谱构建。
机器学习等人工智能技术与知识图谱技术也会在知识构建、知识推理、知识存储以及知识应用等多方面有更加深入的结合。算法模型将更好地支持全流程的知识图谱构建。
结语
各行业领域用户都摩拳擦掌,准备利用知识图谱技术“武装”自身业务。但知识图谱技术在垂直领域的未来之路还有很长,每一项技术的发展都是螺旋递进。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号