助力企业数字化转型,知识图谱为应用而生|爱分析报告(10)
2023-04-30 来源:飞速影视
知识抽取:面对海量的数据源,在构建知识图谱的过程中,需要自动化的技术抽取可用的知识单元,其中知识单元包含实体、属性与关系三个要素。并通过不断形成的知识单元,形成知识表达,为上层的构建提供基础能力;
可以看出,知识抽取即可拆分为实体抽取、关系抽取以及属性抽取的技术。其中由于属性抽取主要针对实体可以看成是实体与属性值之间的关系抽取问题,所以属性抽取技术可以借鉴使用关系抽取技术的相关思想。实体抽取也可认为是命名实体的学习与识别,即从原始的语料中自动识别出命名实体;
实体是知识图谱中的最基本元素,其抽取的完整性、准确率、召回率等将直接影响到知识库的质量。因此,实体抽取是知识抽取中最为基础与关键的一步。
知识融合:知识融合是针对于知识质量问题,进行高层次的知识组织,使来自不同知识源的知识在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等步骤,达到数据、经验以及人的思想的融合,形成高质量的知识库;
知识融合技术主要包括实体对齐、知识加工、知识更新。其中实体对齐也称为实体匹配或实体解析,主要是用于消除异构数据中的实体冲突、指代不明等问题。在通过实体对齐后,已形成知识的雏形,但未形成知识体系,需要通过知识加工进行构建。知识更新主要作用于知识体系,进行不断的迭代更新,拓展知识。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号