CVPR2020人脸防伪检测挑战赛冠亚军论文解读(下篇)(2)
2023-05-01 来源:飞速影视
论文地址:https://arxiv.org/abs/2003.04092
1
导读
人脸防伪(FAS)在人脸识别系统中起着至关重要的作用。大多数最先进的FAS方法依赖于堆叠卷积和专家设计的网络,在描述详细的纹理信息方面比较弱,在环境变化(如不同的光照度)时容易失效,并且倾向于使用长序列作为输入来提取动态特征,这使得该方法很难部署到需要快速响应的场景中。
2
简介
《Searching Central Difference Convolutional Networks forFace Anti-spoofing(CDCN [1]), CVPR2020》论文,提出了一种基于中心差分卷积(CDC)的新型帧级FAS方法,它能够通过聚合强度和梯度信息来捕获内在的详细模式。用CDC构建的网络,称为中心差分卷积网络(CDCN),相较于用普通卷积构建的网络,能够提供更稳健的建模能力。
此外,在一个专门设计的CDC搜索空间上,可利用神经结构搜索(NAS)发现更强大的网络结构(CDCN ),该网络结构可与多尺度注意力融合模块(MAFM)组装,进一步提升性能。在6个基准数据集上进行了综合实验,结果表明:1)所提出的方法不仅在数据集内部测试中取得了优异的性能(特别是在OULU-NPU数据集(Protocol1)实现了0.2%的ACER),2)在跨数据集测试中也有很好的通用性(特别是从CASIAMFSD到Replay-Attack数据集,实现了6.5%的HTER)。
3
方法
通过下图我们可以直观的看到普通卷积与中心差分卷积(CDC)在伪造线索捕捉上的差异,使用普通卷积非常容易受到光照camera型号等影响,而使用CDC后网络更能捕捉到spoofing的本质特征,且不容易受到外部环境的影响。
中心差分卷积神经网络CDCN:
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号