器官芯片:颠覆药物研发流程的“尖刀技术”!(12)
2023-05-02 来源:飞速影视
图 | 多器官芯片系统(来源:Qirui Wu, Jinfeng Liu et al., Organ-on-a-chip: recent breakthroughs and future prospects, BioMedical Engineering OnLine, 2020)
2010 年,Van 等人首次将肝脏和肠道整合至一个微流控装置中,肠和肝切片在芯片上可以发挥作用,并发生相互作用,还可调节胆汁酸的合成。这一系统使体外研究成为可能,并使研究人员能够进一步掌握器官间的相互作用机制。此后,大量器官被集中到单个芯片上,器官芯片需要保持稳定的液体连接,避免细菌污染,并在整个培养过程中监测细胞活力。
随着芯片上器官数量的增加,系统的复杂性也随之增强。因此,为避免发生无法预测的结果,简化现有系统变得至关重要。Lee 等人制造了易于组装和操作的无泵的多器官芯片。Satoh 等人报道了一种在微板大小的气动压力驱动介质循环平台上形成的多吞吐量多器官芯片系统。该系统具有多器官培养单元同时操作、微流控网络设计灵活、移液管友好的液体处理界面、适用于微孔板的实验方案和分析方法等优点,这种多器官培养平台将成为药物发现的有利研究工具。
原位癌器官芯片
一直以来,延缓新型抗癌疗法开发进程的阻碍之一就是缺乏能够识别癌症发展中关键分子、细胞和生物物理特征的临床前模型。这是因为大多数体外肿瘤模型无法准确地再现肿瘤形成的局部组织和器官微环境,此后开发出的更复杂的体外癌症模型,例如在灵活的细胞外 基质凝胶中生长的跨孔细胞培养、球状体和类器官等,与传统的 2D 基质相比,它们能更好地模拟正常及癌变组织的发展变化。但是,这些模型仍然缺乏组织-组织界面、器官水平结构、流体流动和细胞在活器官内经历的机械信号,而且从不同的组织微室中收集样本难度也很大。
哈佛大学 Wyss 生物启发工程研究所 Alexandra Sontheimer-Phelps 团队在综述《微流控人体器官芯片模拟癌症》(Modelling cancer in microfluidic human organs-on-chips)中,概述了最新的微流控细胞培养技术是如何促进人体器官芯片应用于体外模拟人体相关组织和器官微环境中的癌细胞行为。器官芯片使实验人员以可控的方式改变局部细胞、分子、化学和生物物理参数,并分析它们是如何促进人类癌症的形成和进展以及对治疗的反应。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号