特斯拉自动驾驶的底层逻辑(5)
2023-05-20 来源:飞速影视
在2021年6月CVPR大会上,卡帕西曾表示毫米波雷达收集数据中曾出现“间歇性翻车”、甚至误判等情况。他举了三个具体例子,前方车辆急刹车、大桥下前车行驶速度以及对路边静止卡车的判断。
情况一:前方车辆出现急刹,毫米波雷达短时间内出现6次跟丢目标车的情况,跟丢状态下前车的位置、速度和加速度都归于零。
情况二:在行驶的汽车从大桥下通过时,雷达把一静一动的物体都当作静止物体;此时视觉传感却计算出行驶车辆的速度和位移,导致数据融合后的曲线传递出“前车在减速并且刹车”的错误信息。
情况三:在高速路旁停着一辆白色大卡车,纯视觉算法在距目标车180m处就发现白色卡车,并作出预报,但融合算法直到110m处才作出反馈,足足延迟5秒。
上述案例里,纯视觉算法均输出稳定且大幅优于雷达 视觉融合算法,精准地跟踪到前车行驶状况并作出深度、速度、加速度等数据。
不仅如此,纯视觉算法还可以在雾、烟、尘等环境里保持对前方车辆的测速、测距工作,如此一来拿掉毫米波雷达也不奇怪了。根据特斯拉AI Day上最新发布的信息,目前特斯拉每周能够获得一万个人们恶劣环境下驾车的短视频,包括大雨、大雪、大雾、黑夜、强光等等情况,神经网络通过学习训练这些已经标注好的材料,实现在没有毫米波雷达的情况下,也可以精准感知前方车辆距离。
可以说,特斯拉宣布拿掉毫米波雷达的底气,是对自己纯视觉算法成熟的自信,并且在无监督自学的加持下,特斯拉纯视觉算法迭代和完善明显提速。
今年7月10日,特斯拉纯视觉版本的FSD正式在美开启内测,2000名受邀车主通过OTA方式升级到FSD Beta V9.0版本,他们大多是特斯拉的粉丝兼中小型KOL,Youtube博主Chunk Cook(以下简称CC)就是其中之一,他还略懂工程学和航天学专业知识。
系统更新一结束,CC开启新版FSD道路测试,并把测试视频上传至油管。视频中他来到一个车辆较多、车速较快的T路口进行转弯测试,结果显示,7次中只有1次,FSD顺利完成自动驾驶,其余都需要人工接管方向盘来完成驾驶。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号