大脑网络组织的多尺度建模:多层网络视角(6)
2023-05-21 来源:飞速影视
这个基于拓扑距离的指标被拓展到时效网络中,他们引入这个度量C来量化在t时刻节点的邻居集在t 1时刻也出现的概率。通过平均所有节点,他们最终定义了时间相关系数C:
4. 脑组织的多层网络特性
上述部分介绍了脑多层网络的构建以及相关指标的设计,如何结合脑组织的生理结构和功能信息对结果进行合理的解释和利用呢?在解释结果方面,有两个问题需要我们注意。其一是大脑的结构网络和功能网络之间的关系是什么?其二是如何在脑网络中解释大脑存在的信息分离和整合以及之间的关系?
大脑的结构和功能都是认知、知觉、意识等复杂神经现象的关键决定因素。现代神经科学中一个重要的问题就是,结构连接和功能连接之间是如何相互联系的,以及这种这种假定如何帮助我们更好的理解大脑组织。最近基于模型和数据驱动的方法给出自己的看法:功能层面的连接可以通过结构连接预测,并且这种预测可以解释大脑的几种复杂状态,从静息态到基于任务和病理状态。那么利用DTI以及fMRI构建的多层网络的高阶拓扑特性是什么?它们如何帮助描述大脑的解剖功能组织呢?Battiston et al. (2017) 给出了自己的看法,读者可以自行了解,文中作者研究DTI-fMRI多路复用网络的简单连接基序(motif),并得出包含结构连接和正相关功能连接的基序在人脑中是过多的。结果可见图5。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号