量子信息的过去、现在和未来(8)

2023-05-21 来源:飞速影视
人们发现,量子系统的基态通常遵循纠缠“面积定律”,这意味着特定球形区域内外粒子间的纠缠量与该区域内的粒子总数不同,而与该区域边界附近的粒子数相似[89-91]。这引出了在经典计算机上基于张量网络模拟量子多体系统的新方法,该方法利用这种纠缠结构大大改进了以前的方法[92-95]。人们注意到,当纠缠通过一个区域中粒子的边缘量子态的熵来量化时,纠缠具有可用于识别不同量子物相的普适性质[96-98]。
人们研究了制备量子基态的计算难度,并令人信服地指出,在某些情况下,这对量子计算机来说是一个难题[99];即便对于平移不变的一维系统,这种难度也会存在[100],尽管这种计算上难以处理的量子多体系统可能具有不一定有实际物理意义的奇异相互作用。无论如何,根据量子的扩展的丘奇-图灵论题,这些量子计算机难以处理的基态不可能通过任何可行的物理过程在自然界中产生。
量子信息也为强混沌量子系统的行为提供了一个新的视角(这些系统我们现在通过纠缠动力学的角度来看待)[101]。量子系统中局域编码的信息迅速扩散,编码在许多粒子共同组成的量子纠缠结构中,因此对于一次只能接触到几个粒子的局部观察者来说是不可见的。这种纠缠扩散可以通过量子计算机有效地模拟[102],但这超出了已知经典计算方法的范围,因为经典计算方法无法简洁地编码或有效地模拟高度纠缠的多粒子量子态。
9. 量子引力
量子引力和量子信息之间的联系可以追溯到霍金在1974年的发现,即由于量子效应,黑洞会发出热辐射,这是由于黑洞事件视界内外间的量子纠缠引起的[103]。这引出了事件视界面积与黑洞熵之间的定量关系[104](黑洞熵是衡量黑洞能存储多少量子信息的一种量度)。这些结果预测了数年后被发现的凝聚态物理中纠缠熵的面积定律。此外,黑洞的熵惊人地大——例如,直径只有几公里的太阳质量黑洞的熵比太阳的熵大20个数量级。事实上,黑洞虽然是经典引力理论所描述的非常简单的物体[105,106],但在量子力学上是自然界允许的最复杂的物体,正如黑洞的信息存储能力所量化的那样。
20世纪90年代发现的全息对偶(Holographic duality)证明,至少在负曲率的反德西特空间中,体量子时空中的量子引力相当于位于时空边界上的低一维的非引力量子场论[107]。结果表明,体的几何结构是通过边界理论中的量子纠缠结构编码在边界上[108]。此外,将局部体可观测量映射到边界上相应的高度非局域可观测量的全息字典被视为一种量子纠错码的编码映射[109,110]。因此,我们可以将时空本身的几何结构视为由底层的量子纠缠产生的涌现特征,这对于边界理论的某些变形具有内禀的鲁棒性。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号