我们距离自动驾驶汽车究竟还有多远?|理性派对第三季(4)
2023-05-01 来源:飞速影视
接下来是算法,目前的主流算法是深度学习,我认为将来深度神经网络可能变成更加主流的自动驾驶算法。目前也有很多人质疑它的可解释性不好,安全性不一定能得到有效保障。但是人类也是神经网络构成的智能体,人类的大脑就一定具有可解释性吗?它也不是每次都能够判断准确的。因此,只要算法的安全程度足够好,我们还是可以信赖它的有效性的。至于网络本身是否具有可解释性,是否有足够的安全保障,则需要根据效果进行判断。
李慧云:我也赞同神经网络正在快速发展,它能在自动驾驶的感知、人机共驾语音识别等多个领域大放光芒。但是我认为还有一部分是现在的深度学习缺乏的:它没有人类的推理、归纳、演绎、类比等能力,而这些能力是青蛙和人的很大的区别。我认为如果要从青蛙过渡到人,数学、人工智能这两个领域还需要有很大的突破。
但我也赞同要看疗效。现在我们看疗效的通用方案是对产品的设计运行域(ODD)进行清晰地划分。比如说在低速情况下规定好时速、道路模型,那么就有一个选定的路线,这个路线将由乘客、运营商和信息通信的提供商共同确认。在这样的区域内,按照我们的方案如果能够完成感觉、决策、控制、执行、避障、紧急停靠等功能,我们就能够很好地让产品在区域内工作。
为什么数据是新时代的石油?
段玉龙:刚才您提到数据是自动驾驶三个基本支柱之一,数据的采集、使用、分析都十分重要。关于数据,您怎么看?
李升波:现在数据已经变成了新时代的石油这样的基础生产资料,重要性不言而喻,尤其是在自动驾驶领域。我们每天开车都能产生大量的数据,但这些数据存在哪、怎么用好是一个非常核心的问题。
人类驾驶员是一种类似于强化学习过程的智能性提升手段。用于自动驾驶的强化学习原理是指不断地累积虚拟的或真实的数据,然后运用数据训练感知算法、计算算法和控制算法,以提高算法的性能,使自动驾驶逐渐从低级别过渡到高级别。
李升波教授
一种典型解决方案是我国的科学家提出的。既然车上的算力比较小,或者说车上能运行的算法规模有限,不妨将一部分算力挪到路侧甚至是云端服务器上去计算。我们称之为云控驾驶,或者是车路协同的智能驾驶,这是一个全新的概念。通过这个方案,我们可能能够解决算力不足、单车数据累积不足的问题。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号