几何、分形与时空:跨越百年的维度定义之旅(3)

2023-05-21 来源:飞速影视
但在这段时间里,数学家们意识到,维度缺乏正式的定义实际上是一个问题。
乔治·康托尔 (Georg Cantor) 因发现无穷大有不同的势 (cardinality)而闻名[2]。起初,康托尔认为线段、正方形和立方体中的点集必须具有不同的势,就像一条10个点的线、一个10×10的点网格和一个10×10×10的点立方体有不同数量的点。然而,在1877年,他发现线段中的点与正方形(以及所有维度的立方体)中的点之间存在一一对应关系,这表明它们具有相同的势。凭借直觉,他证明了尽管维度不同,线、正方形和立方体都具有相同数量的无穷小的点。康托尔写信给理查德·戴德金(Richard Dedekind),“我看到了,但我不相信它。”
康托尔意识到这一发现威胁到n维空间需要n个坐标来描述的直觉观念,因为n维立方体中的每个点都可以由一段区间中的一个数字唯一标识。因此,从某种意义上说,这些高维立方体相当于一维线段。然而,正如戴德金指出的那样,康托尔的函数是极不连续的——它本质上是将一条线段分成无限多个部分,然后将它们重新组合成一个立方体。这不是我们所希望的坐标系的行为。这种坐标系太过无序,无法为我们描述物体提供帮助,就像是为曼哈顿的建筑物提供唯一地址却随机分配这些地址。
然后,在1890年,朱塞佩·皮亚诺 (Giuseppe Peano) 发现,可以将一维曲线缠绕得如此紧密且连续,以至于可以填充二维正方形中的每个点。这是第一条空间填充曲线(space-filling curve)。但皮亚诺给出的例子也不是坐标系的良好基础,因为曲线与自身无限多次相交。回到对曼哈顿的比喻,这就像给一些建筑物多个地址。

几何、分形与时空:跨越百年的维度定义之旅


图4:这些是产生空间填充曲线的前五个步骤。在每一步,曲线的面积为零,但在极限情况下,它填充了正方形。这条特殊的曲线是由大卫·希尔伯特(David Hilbert)引入的。
这些和其他令人惊讶的例子清楚地表明,数学家需要证明维度是一个真实的概念。例如,当n≠ m时,n维和m维欧几里得空间的某些基本性质是不同的。这个目标被称为“维度不变性”(invariance of dimension)问题。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号