数字法治|潘芳芳:算法歧视的民事责任形态(7)

2023-05-01 来源:飞速影视
(二)算法歧视的行为认定与损害后果
“算法歧视”是对因算法决策技术的使用而遭受的不合理的差别待遇的统称,具体到侵权救济机制中遭受侵害的具体权益类型的确定,则需要根据算法决策技术使用的具体场景做出判断。算法存在不同的功能和类型,有用于个人和群体特征分析和类型化的数字画像(profiling)和分类(classification)算法;有针对个性化推送和服务的过滤(filter)和推荐(recommendation)算法;有对未来可能性进行预测的数据挖掘(data mining)和机器学习(machine learning)算法。功能和类型多元的算法被广泛用于信用评级或评分、职场能力评估、个人喜好预测、广告推送和个性化定价等多场景化的生活中。算法程序获得的歧视性决策结果,尤其是在结果对外公开和使用的情况下,会对个人的信誉度、交易能力和水平、就业和贷款资格、违法或者违约可能性以及商品和服务购买能力等产生负面影响,使主体的信用权益、劳动者平等(就业)权以及消费者的合法权益等产生侵害。
在算法歧视案件的审理过程中,对于不公平的歧视待遇的认定与审查,主要有区别待遇(disparate treatment)和差异影响(disparate impact)两种模式。以“区别待遇”模式为基础的歧视认定规则,也被称之为“主观故意歧视”,主要包括两个要素:同样的情况遭受不同的对待;有主观上的歧视意图。而“差异影响”也可称之为“无过错的算法歧视审查模式”,是指所实施的行为或规则表面上看似中立,但对所保护的对象产生了不合比例的不利影响,这种情况下,歧视的认定,无须考量主体实施行为或者规则的时候是否有歧视的故意,只需要审查行为或者规则实施以后,是否针对对方产生差异性的影响即可。
在行为人存在不同样态的侵权行为模式下,针对前文所述的“主观故意实施算法歧视”的行为的审查与认定,法官可采“区别对待”模式。行为人在明显可知、可察的情况下将歧视性质的敏感数据纳入决策的自变量范畴,导致被决策者因不公平的歧视性决策结果而遭受损失时,为之承担侵权损害赔偿责任。而对于大多数情况下,行为人是以消极性、带有隐秘特性的不作为,违反应当履行的歧视风险预防和制止义务时,法官则可采用“差异影响”的审查模式。在被决策者能够证明算法决策给自己带来了不利的差异性后果,且行为人不能够证明自身没有过错时,认定行为人违反了歧视风险的预防和制止义务,承担损害赔偿的侵权责任。“差异影响”的算法歧视审查模式,能够发现隐藏的歧视意图,有效规制在形式上非歧视但会造成歧视性后果的算法决策行为,有效平衡与弥合双方因专业能力、不对称的信息和失衡的风险预防和制止能力等导致的不平等的法律地位,适应算法歧视案件的特殊性,能够更好地维护和保障受害者基本权益。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号