阿里人工智能这五年:天才的野心与自证(6)

2023-05-04 来源:飞速影视
随着深度学习算法与模型的普及应用,「调参」工作成为大部分算法工程师的日常,淘宝和天猫的搜索团队一开始也不例外。
因为深度学习算法的不可解释性,很多基于该技术的方案就像是一个「黑盒」,模型中的参数选择和调整成了一件难捉摸的事,往往意味着繁琐而毫无头绪,没有技术含量。
在漆远看来,光是调参远不能建立起技术体系,「虽然属于工程层面的工作,但仍需要科学的思想指导——最好的工程指导就是科学,否则你就只能是一名调参工程师」。
与漆远秉持同一观点的还有金榕。「原来我们都是做些调参工作,直到金榕老师来了之后才把我们带上正轨」,李昊谈道,「他常反问我们,深度学习为什么能奏效?你能从理论上解释吗?」
「图搜」项目之后,李昊便来到了搜索技术部——阿里最为核心的算法部门之一。在这里,李昊遇到了前来深入业务第一线的金榕。
李昊当时的主要工作是为深度学习模型进行压缩与加速优化,一般做法是套用现有模型,但金榕通常会提供新的思路,「他给了我们一堆的公式,让我们去试」,但这一试就是三个月,也没出结果。
当李昊和同事怀着忐忑的心情找到金榕,他并没有因此责备,反而给予鼓励,「如果三个月就能做出来,那就是太简单了,继续去做吧!」直到第四个月算法总算跑通。这套算法将Embedding 技术结合深度学习引入到搜索业务中,明显提升了淘宝主搜索的 GMV。
李昊回忆,当时金榕还做了一套非常长的理论证明,证明算法是可收敛的,并在内部分享,「他当时给予我们的理论指导,正是我们所稀缺的」,李昊对此十分感激。
来到蚂蚁金服的漆远则接到了智能客服的项目,通过智能交互机器人来解决支付宝的客服问题。这一次,他顺利很多,获得当时集团客户服务部负责人戴珊的支持后(戴珊是阿里巴巴早期创始的十八罗汉之一),很快争取到了资金和资源进行技术的验证。
在阿里科技发展早期,以阿里合伙人为代表,形成了一股来自理想主义的推动力量。
2015 年的双十一,首次采用深度学习技术的支付宝客服实现了 94% 语音自助,这意味着有 94% 打来的电话不再需要转接到人工服务,次年,这个数字提升到 97%。去除掉人工智能团队的人员工资和计算资源成本,智能客服项目为公司节省了一个多亿。
所谓「知人善用,人尽其才」,技术工具同样如此,唯有了解 AI,才能用好 AI。
要在一家互联网公司里树立起对于新技术的认知和信仰并非易事,这为科学家们设置了一道又一道的障碍栏,甚至不可避免地造成了人员流失。
相关影视
合作伙伴
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)

www.fs94.org-飞速影视 粤ICP备74369512号