五次方程:群与域——数学精灵阿贝尔与伽罗瓦(8)
2023-05-21 来源:飞速影视
例如,S3的最大正规子群系列为S3、H、单位元群,其指数6/3=2,3/1=3,均为素数,故根式可解。而对于S4来说,它有24个元素,其最大正规子群G4有12个元素,G4的最大正规子群G3有4个元素,G3的最大正规子群G2有2个元素,最大正规子群系列的指数分别为24/12=2,12/4=3,4/2=2,2/1=2,均为素数,故也根式可解。
当n>4时,Sn的最大正规子群An共有n!/2个元素,而An的正规子群只有单位元群,因此其最大正规子群系列的指数为2和n!/2,后者当n>4是必不为素数。依据伽罗瓦理论,方程没有一般根式解。多么美妙简洁的判断和证明!这是十八岁的伽罗瓦的独立发现。它先是由理查德带给柯西,尔后又以《一个方程可以通过开方解出的条件》为题,递交给法兰西科学院,参与那年的数学大奖赛。
遗憾的是,法国数学的执牛耳者柯西忽视了伽罗瓦的论文(此时勒让德已老态龙钟),科学院秘书傅里叶又突然逝去,遗失了伽罗瓦的论文。如前所说,最后大奖颁给了德国数学家雅可比和已经去世的阿贝尔。说到柯西,他是历史上最多产的数学家之一,以他名字命名的定理遍布高等数学教程,而傅里叶发明的三角级数理论是应用数学最强有力的工具之一。
说到伽罗瓦理论,那是一种更一般的理论形式,这要依赖阿贝尔首先提出的“域”的概念。域是至少有两个元素的数集,它对应加减乘除(除数不为0)运算是封闭的,记为F(field)。正如群有子群,数域也有子域,若K是F的子域,则F是K的扩域。显而易见,有理数、实数和复数都是域。有理数域是最小的域,实数域和复数域都是它的扩域。此外,形如a b(a和b是有理数)的全体也是域。
伽罗瓦定义了“方程的群”(伽罗瓦群),它是由一部分置换组成的子群,这些置换保持根的代数关系不变,即具有对称性。伽罗瓦证明了,对任意n,总能找到一些方程,其伽罗瓦群为整个Sn。而伽罗瓦扩域基本定理是说,方程的系数域与根域之间的所有域与伽罗瓦群的所有子群之间存在一一对应关系。这是伽罗瓦理论的核心,它帮助我们通过研究较为简单的置换群来解决复杂的域的问题。
报考综合理工学校失利和成果两次错失被承认的机会,远不是伽罗瓦最背运的遭遇。十八岁那年,他又一次报考综合理工学校,其结果是“一个较高智商的考生在一个较低智商的考官面前失败了”。从此,这所大学对他永远关闭了大门,因为只允许每个考生报考两次。据说,一道口试题他明明答对却被判错。离开考场前,愤怒的伽罗瓦把黑板擦掷到考官脸上。
本站仅为学习交流之用,所有视频和图片均来自互联网收集而来,版权归原创者所有,本网站只提供web页面服务,并不提供资源存储,也不参与录制、上传
若本站收录的节目无意侵犯了贵司版权,请发邮件(我们会在3个工作日内删除侵权内容,谢谢。)
www.fs94.org-飞速影视 粤ICP备74369512号